K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

Đáp án C

+ Dung kháng của cuộn dây 

+ Với đoạn mạch chỉ chứa cuộn cảm thuần thì cường độ dòng điện luôn trễ pha 1/2π so với điện áp hai đầu mạch.

 Ta có hệ thức độc lập thời gian:

24 tháng 8 2016

Cường đô ̣dòng điêṇ vuông pha hiêụ điêṇ thế hai đầu mac̣h: 
\Rightarrow (\frac{u}{U_0})^2 + (\frac{i}{I_0})^2 = 1 \Leftrightarrow U_0 = 200\sqrt{2}V \Rightarrow U = 200 V

11 tháng 6 2016

Ta có Um không đổi và để UAm luôn không đổ vs mọi gtri của R thì : Um=UAm   hay  ZL=2ZC =2.100=200 → L=2/π  ( D)

                 Sử dụng hình vẽ suy luận cho nhanh :              R ZL ZC UAm Um

                  

29 tháng 5 2016

Hướng dẫn:

\(U_{AB}=U_C=2\) (1)

\(U_{BC}^2=U_r^2+U_L^2=3\) (2)

\(U_{AC}^2=U_r^2+(U_L-U_C)^2=1\) (3)

Giải hệ 3 pt trên sẽ tìm đc \(U_r\) và \(U_L\)

Chia cho \(I\) sẽ tìm được \(r\) và \(Z_L\)

 

24 tháng 8 2016

Có: \(L=CR^2=Cr^2\Rightarrow R^2=r^2=Z_LZ_C,URC=\sqrt{3U}_{Lr}\Leftrightarrow Z^2_{RC}=3Z^2_{Lr}\Leftrightarrow R^2+Z^2_C=3\left(Z^2_L+R^2\right)\)

\(\Leftrightarrow-3Z^2_L+Z^2_C=2R^2\) (*) \(R^2=Z_LZ_C\) (**)

Từ (*) và (**) có: \(Z_L=\frac{R}{\sqrt{3}};Z_C=\sqrt{3}R\Rightarrow Z=\sqrt{\left(R+r\right)^2Z^2_{LC}}=\frac{4R}{\sqrt{3}}\Rightarrow\cos\phi=\frac{R+r}{Z}=\frac{\sqrt{3}}{2}\approx0,866\)

A đúng

24 tháng 8 2016

Ta có: L = R^2 C = r^2 C
\Rightarrow Z_L. Zc = R^2 = r^2

Điện áp hiệu dụng của đoạn mạch RC gấp \sqrt{3} lần điện áp hiệu dụng hai đầu cuộn dây 
I. \sqrt{R^2 + Z_c^2} = \sqrt{3}.I. \sqrt{r^2 + Z_L^2}\Leftrightarrow R^2 + Z_c^2 = 3 (r^2 + Z_L^2)
\Leftrightarrow Z_L.Zc + Z_c^2 = 3.Z_L.Zc + 3 Z_L^2
\Leftrightarrow Zc(Z_L + Zc) = 3 Z_L (Z_L + Zc)
\Rightarrow Zc = 3Z_L \Rightarrow R^2 = 3 Z_L^2 \Rightarrow R = Z_L\sqrt{3}
=> Hệ số công suất của đoạn mạch là
cos \varphi = \frac{R + r}{\sqrt{(R + r)^2 + (Z_L - Zc)^2}} = \frac{2R}{\sqrt{4R^2 + 4 Z_L^2}} = \frac{2\sqrt{3}Z_L}{\sqrt{4.3. Z_L^2 + 4 Z_L^2}} = \frac{\sqrt{3}}{2}

3 tháng 6 2016

Khi tăng điện dung nên 2.5 lần thì dung kháng giảm 2.5 lần. Cường độ dòng trễ pha hơn hiệu điện thế $\pi/4$ nên

$Z_L-\frac{Z_C}{2.5}=R$

Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì $Z_LZ_C=R^2+Z_L^2$

$Z_LZ_C=(Z_L-\frac{Z_C}{2.5})^2+Z_L^2$

Giải phương trình bậc 2 ta được: $Z_C=\frac{5}{4}Z_L$ hoặc $Z_C=10Z_L$(loại vì Zl-Zc/2.5=R<0)

$R=\frac{Z_L}{2}$

Vẽ giản đồ vecto ta được $U$ vuông góc với $U_{RL}$ còn $U_C$ ứng với cạch huyền

Góc hợp bởi U và I bằng với góc hợp bởi $U_L$ và $U_{LR}$

$\tan\alpha=\frac{R}{Z_L}=0.5$

$\sin\alpha=1/\sqrt5$

$U=U_C\sin\alpha=100V$

3 tháng 6 2016

\(U_{C}{max}=\frac{U\sqrt{R^{2}+Z_L^{2}}}{R}\); \(Zc=\frac{R^{2}+Z_L^{2}}{Z_L}\)
khi C2=2,5C1---->Zc2=Zc1/2,5=ZC/2,5
do i trể pha hơn U nên Zl>Zc/2,5
\(\tan\frac{\pi }{4}=\frac{Z_L-0,4Zc}{R}=1\Rightarrow R=Z_L-0,4Z_C\)
\(\Rightarrow Z_C.Z_L=Z_L^{2}+(Z_L-0,4Z_C)^{2}\Rightarrow 2Z_L^{2}-1,8Z_CZ_L+0,16Z_C^{2}=0\Rightarrow Z_L=0,8Z_C;Z_L=0,1Z_C\)(loai)
\(\Rightarrow R=Z_L-1,25.0,4Z_L=0,5Z_L\)
\(\Rightarrow U_{C}{max}=\frac{U\sqrt{Z_L^{2}+0,25Z_L^{2}}}{0,5Z_L}=100\sqrt{5}\Rightarrow U=100V\)

 

29 tháng 5 2016

Bài này thì có vẹo gì đâu bạn.

\(u=100\sqrt 2\cos(100\pi t)(V)\)

\(Z_L=\omega L = 10\Omega\)

\(Z_C=\dfrac{1}{\omega C}=20\Omega\)

Tổng trở \(Z=\sqrt{r^2+(Z_L-Z_C)^2}=10\sqrt 2 \Omega\)

\(\Rightarrow I_o=\dfrac{U_0}{Z}=10A\)

\(\tan\varphi=\dfrac{Z_L-Z_C}{R}=-1\Rightarrow \varphi=-\dfrac{\pi}{4}\)

Suy ra: \(\varphi=\dfrac{\pi}{4}\)

Vậy \(i=10\cos(100\pi t +\dfrac{\pi}{4})\) (A)

30 tháng 10 2015

Do \(u_L\) vuông pha với \(i\)nên \(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)

Khi u cực đại thì \(u=U_0\), thế vào biểu thức trên ta tìm đc i = 0.

30 tháng 10 2015