K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

Đoạn mạch chứa một cuộn cảm thuần L; đặt vào hai đầu đoạn mạch điện áp tức thời u = U0cos ωt (V) thì cường độ hiệu dụng trong mạch là bao nhiêu ?A. U0LωU0Lω

B. U02LωU02Lω

C. U0LωU0Lω

D. U02Lω

7 tháng 6 2017

Đáp án: B

17 tháng 11 2015

Mạch chỉ có điện trở thuần thì u cùng pha với i.

Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)

Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)

\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)

\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.

30 tháng 10 2015

Đoạn mạch chỉ có cuộn cảm thuần thì i trễ pha \(\frac{\pi}{2}\)so với u.

\(I_0=\frac{U_0}{Z_L}=\frac{U_0}{\omega L}\)

Suy ra \(i=\frac{U_0}{\omega L}\cos\left(\omega t-\frac{\pi}{2}\right)\)

30 tháng 10 2015

chọn C

 

1 tháng 8 2016

Hỏi đáp Vật lý

28 tháng 3 2017

Cho chet

7 tháng 6 2017

Đáp án đúng: D

12 tháng 11 2015

Mạch chỉ có cuôn cảm thì cường độ dòng điện và điện áp tức thời vuông pha tức là

\(\frac{i^2}{I_0^2}+\frac{u^2}{U_0^2} = 1. \)

với \(i = 2A, u = 100\sqrt{2V}\) => \(\frac{4}{I_0^2}+\frac{(100\sqrt{2})^2}{U_0^2} =1\)

mà \(U_0 = I_0 Z_L = 50I_0\)(\(Z_L = L \omega = 50 \Omega.\)) Thay vào phương trình trên ta được

\(\frac{4}{I_0^2}+\frac{20000}{2500.I_0^2} = 1\)=> \(\frac{12}{I_0^2} = 1=> I_0 = 2\sqrt{3}A.\)

Mạch chỉ có cuộn cảm thuần => u sớm pha hơn i là \(\pi/2\). Tức là \(\varphi_u - \varphi_i = \frac{\pi}{2} => \varphi_i = \frac{\pi}{3}-\frac{\pi}{2} = -\frac{\pi}{6}.\)

\(i = 2\sqrt{3} \cos (100\pi t -\frac{\pi}{6})A.\)

Chọn đáp án A bạn nhé.

 

O
ongtho
Giáo viên
3 tháng 12 2015

Độ lệch pha giữa u và i là: \(\varphi=\frac{\pi}{12}+\frac{\pi}{12}=\frac{\pi}{6}\)rad

\(\cos\varphi=\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}=0,87\)

19 tháng 2 2016

Đáp án C.
lúc đầu ta có :
UMB=2UR => ZMB=2R <=> ZC=\(\sqrt{3}\)R mà C=\(\frac{L}{R^2}\) => ZL=\(\frac{R}{\sqrt{3}}\)
lúc sau ta có Uc' max :
Zc'.ZL=R2\(Z^2_L\) => Zc'=\(\frac{4R}{\sqrt{3}}\)
\(\text{tanφ}=\frac{Z_L-Z_C}{R}\Rightarrow\tan\varphi=-\sqrt{3}\Rightarrow\varphi=-\frac{\pi}{3}\)