K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2015

Mạch chỉ có cuôn cảm thì cường độ dòng điện và điện áp tức thời vuông pha tức là

\(\frac{i^2}{I_0^2}+\frac{u^2}{U_0^2} = 1. \)

với \(i = 2A, u = 100\sqrt{2V}\) => \(\frac{4}{I_0^2}+\frac{(100\sqrt{2})^2}{U_0^2} =1\)

mà \(U_0 = I_0 Z_L = 50I_0\)(\(Z_L = L \omega = 50 \Omega.\)) Thay vào phương trình trên ta được

\(\frac{4}{I_0^2}+\frac{20000}{2500.I_0^2} = 1\)=> \(\frac{12}{I_0^2} = 1=> I_0 = 2\sqrt{3}A.\)

Mạch chỉ có cuộn cảm thuần => u sớm pha hơn i là \(\pi/2\). Tức là \(\varphi_u - \varphi_i = \frac{\pi}{2} => \varphi_i = \frac{\pi}{3}-\frac{\pi}{2} = -\frac{\pi}{6}.\)

\(i = 2\sqrt{3} \cos (100\pi t -\frac{\pi}{6})A.\)

Chọn đáp án A bạn nhé.

 

27 tháng 11 2015

\(Z_L=\omega L=100\Omega\)

\(I_0=\frac{U_0}{Z_L}=\frac{100\sqrt{2}}{100}=\sqrt{2}\)(A)

Dòng điện i trễ pha \(\frac{\pi}{2}\) so với u nên:

\(i=\sqrt{2}\cos\left(100t-\frac{\pi}{2}\right)\)(A)

2 tháng 11 2015

\(Z_C=\frac{1}{\omega C}=200\Omega\)

\(I_0=\frac{U_0}{Z_C}=\frac{100}{200}=0,5\)

Mạch điện chỉ có tụ C nên dòng điện sớm pha \(\frac{\pi}{2}\) so với u

\(\Rightarrow\varphi_i=\varphi_u+\frac{\pi}{2}=0\)

Vậy \(i=0,5\cos\left(100\pi t\right)\left(A\right)\)

O
ongtho
Giáo viên
3 tháng 12 2015

Độ lệch pha giữa u và i là: \(\varphi=\frac{\pi}{12}+\frac{\pi}{12}=\frac{\pi}{6}\)rad

\(\cos\varphi=\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}=0,87\)

7 tháng 6 2017

Đáp án đúng : D

8 tháng 6 2017

Bài giải:

Chọn đáp án D.

1.Đặt điện áp xoay chiều u = 220\(\sqrt{2}\) cos( 100\(\pi\)t) V ( t tính bắng s) vào 2 đầu đoạn mạch gồm điện trở R = 100 ôm , cuộn cảm thuần L = \(\frac{2\sqrt{3}}{\pi}\)H và tụ điện C = \(\frac{10^{-4}}{\pi\sqrt{3}}\)F mắc nối tiếp . Trong 1 chu kì , khoảng thời gian điện áp hai đầu đoạn mạch sinh công dương cung cấp điện năng cho mạch bằng  ?2.Cho mạch xoay chiều gồm 1 cuộn dây có độ tự cảm L...
Đọc tiếp

1.Đặt điện áp xoay chiều u = 220\(\sqrt{2}\) cos( 100\(\pi\)t) V ( t tính bắng s) vào 2 đầu đoạn mạch gồm điện trở R = 100 ôm , cuộn cảm thuần L = \(\frac{2\sqrt{3}}{\pi}\)H và tụ điện C = \(\frac{10^{-4}}{\pi\sqrt{3}}\)F mắc nối tiếp . Trong 1 chu kì , khoảng thời gian điện áp hai đầu đoạn mạch sinh công dương cung cấp điện năng cho mạch bằng  ?

2.Cho mạch xoay chiều gồm 1 cuộn dây có độ tự cảm L điện trở R mắc nối tiếp với tụ điện C .Đặt vào 2 đầu đoạn mạch 1 điện áp u = \(100\sqrt{2}cos\left(100\pi t\right)\)V .Khi đo điện áp hiệu dụng đo được ở 2 đầu tụ điện có giá trị gấp 1,2 lần điện áp hiệu dụng ở 2 đầu cuộn dây.Dùng dây dẫn nối tắt 2 bản tụ điện thì cường độ dòng điện hiệu dụng không đổi bằng 0,5 A .Tìm ZL

5
22 tháng 10 2015

Bạn nên gửi mỗi câu hỏi một bài thôi để mọi người tiện trao đổi.

1. \(Z_L=200\sqrt{3}\Omega\)\(Z_C=100\sqrt{3}\Omega\)

Suy ra biểu thức của i: \(i=1,1\sqrt{2}\cos\left(100\pi t-\frac{\pi}{3}\right)A\)

Công suất tức thời: p = u.i

Để điện áp sinh công dương thì p > 0, suy ra u và i cùng dấu.

Biểu diễn vị trí tương đối của u và i bằng véc tơ quay ta có: 

u u i i 120° 120°

Như vậy, trong 1 chu kì, để u, i cùng dấu thì véc tơ u phải quét 2 góc như hình vẽ.

Tổng góc quét: 2.120 = 2400

Thời gian: \(t=\frac{240}{360}.T=\frac{2}{3}.\frac{2\pi}{100\pi}=\frac{1}{75}s\)

22 tháng 10 2015

2. Khi nối tắt 2 đầu tụ điện thì cường độ dòng điện hiệu dụng không đổi \(\Rightarrow Z_1=Z_2\Leftrightarrow Z_C-Z_L=Z_L\Leftrightarrow Z_C=2Z_L\)

\(U_C=1,2U_d\Leftrightarrow Z_C=2Z_d\Leftrightarrow Z_C=2\sqrt{R^2+Z_L^2}\)

\(\Leftrightarrow2Z_L=\sqrt{R^2+Z_L^2}\Leftrightarrow R=\sqrt{3}Z_L\)

Khi bỏ tụ C thì cường độ dòng điện của mạch là: \(I=\frac{U}{Z_d}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{220}{\sqrt{3.Z_L^2+Z_L^2}}=0,5\)

\(\Rightarrow Z_L=220\Omega\)

26 tháng 10 2015

Hình như là câu C ^^

26 tháng 10 2015

f=50-->\(\omega\)=100\(\pi\) 

IO=I\(\sqrt{2}\)=\(\sqrt{6}\)

t=0 i=2.45 -->\(\varphi\)\(\approx\)0

i=\(\sqrt{6}\) cos (100\(\pi\)t)

8 tháng 7 2016

=0,5 = 1/2 đúng rồi đó bạn, anh mình chỉ vậy

8 tháng 7 2016

em tính ra \(\frac{1}{2}\)(A) có đúng k ạ?

 

1 tháng 6 2016

Ta có: \(Z_C=\frac{1}{C\omega}=30\Omega\)

\(\tan\varphi=-\frac{Z_c}{R}=-\frac{1}{\sqrt{3}}\)
\(\Rightarrow\varphi=-\frac{\pi}{6}\)
\(\Rightarrow\varphi_U-\varphi_I=-\frac{\pi}{6}\Rightarrow\varphi_1=\frac{\pi}{6}rad\)
Lại có: \(I=\frac{U}{Z}=2\sqrt{2}\left(A\right)\)
\(\Rightarrow i=2\sqrt{2}\cos\left(100\pi t+\frac{\pi}{6}\right)\left(A\right)\)

Đáp án A