K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

Ta có

x 3   +   x 2   =   36   ⇔   x 3   +   x 2   –   36   =   0     ⇔   x 3   –   3 x 2   +   4 x 2   –   12 x   +   12 x   –   36   =   0     ⇔   x 2 ( x   –   3 )   +   4 x ( x   –   3 )   +   12 ( x   –   3 )   =   0     ⇔   ( x   –   3 ) ( x 2   +   4 x   +   12 )   =   0

Vậy có 1 giá trị của x thỏa mãn đề bài là x = 3

Đáp án cần chọn là: A

17 tháng 8 2017

a) Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Vậy nên \(a^3+b^3+c^3+6=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow a^3+b^3+c^3=-6.\)

b) \(x^3+y^3+3xy=x^3+3xy\left(x+y\right)+y^3=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1.\)

c) \(x^3-y^3-3xy=x^3-3xy\left(x-y\right)-y^3=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1.\)

8 tháng 12 2019

a)Với  x \(\ne\)-1

Ta có: x2 + x = 0

=> x(x + 1) = 0

=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=-1\left(ktm\right)\end{cases}}\)

Với x = 0 => A = \(\frac{0-3}{0+1}=-3\)

b) Ta có: B = \(\frac{3}{x-3}+\frac{6x}{9-x^3}+\frac{x}{x+3}\)

B = \(\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

B = \(\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

B = \(\frac{x+3}{x-3}\)

c)  Với x \(\ne\)\(\pm\)3; x \(\ne\)-1

Ta có: P = AB = \(\frac{x-3}{x+1}\cdot\frac{x+3}{x-3}=\frac{x+3}{x+1}=\frac{\left(x+1\right)+2}{x+1}=1+\frac{2}{x+1}\)

Để P \(\in\)Z <=> 2 \(⋮\)x + 1

<=> x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

<=> x \(\in\){0; -2; 1; -3}

11 tháng 12 2016

Không chép lại đề nhé:

\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)

\(=\frac{x+3}{x-3}\)

11 tháng 12 2016

b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)

c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)

Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay

(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)

Thế vào sẽ tìm được A

ĐKXĐ thì b tự làm nhé 

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)

10 tháng 3 2016
câu 4=3/2 câu 5=2
10 tháng 3 2016

câu 6 : 

số hs nữ = 34 hs 

số học sinh nam giỏi = hs nữ khá 

=> số hs giỏi = số hs giỏi nữ+số học sinh nam giỏi = số hs nữ giỏi + số học sinh nữ khá = số học sinh giỏi cả lớp =34

13 tháng 12 2019

\(a.2x^2-6x=0\)

\(2x\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(t/mđk\right)\\x=3\left(loại,kot/mđk\right)\end{cases}}\)

\(Thay:x=0\left(t/mđk\right)\Leftrightarrow A=\frac{x-3}{x+3}\Rightarrow\frac{0-3}{0+3}=-\frac{3}{3}=-1\left(t/mđk\right)\)

4 tháng 9 2017

Trả lời giùm mk vs các bn ạ

11 tháng 9 2016

Bài 1:

\(M=\left|x+13\right|+64\)

Vì \(\left|x+3\right|\ge0\)

=> \(\left|x+3\right|+64\ge64\)

Vậy GTNN của M là 64 khi x=-13

\(A=\left|x+3\right|+\left|x+5\right|=\left|-\left(x+3\right)\right|+\left|x+5\right|\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(A\ge\left|-x-3+x+5\right|=2\)

Vaayj GTNN của A là 2 khi \(-3\le x\le5\)

Bài 2:

a) \(\left(x+10\right)^2=0\)

\(\Leftrightarrow x+10=0\Leftrightarrow x=-10\)

b) \(\left(x-\sqrt{121}\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x-\sqrt{121}=0\) (vì \(x^2+1>0\) )

\(\Leftrightarrow x=11\)

11 tháng 9 2016

Bài 1:

a)Ta thấy: \(\left|x+13\right|\ge0\)

\(\Rightarrow\left|x+13\right|+64\ge64\)

\(\Rightarrow M\ge64\)

Dấu = khi x=-13

b)\(\left|x+3\right|+\left|x+5\right|=\left|x+3\right|+\left|-x-5\right|\)

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x+3\right|+\left|-x-5\right|\ge\left|x+3+\left(-x\right)-5\right|=2\)

\(\Rightarrow A\ge2\)

Dấu = khi \(\left(x+3\right)\left(x+5\right)\ge0\)\(\Rightarrow3\le x\le5\)

\(\Rightarrow\begin{cases}\left(x+3\right)\left(x+5\right)=0\\3\le x\le5\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=-3\\x=-5\end{cases}\)

Vậy MinA=2 khi \(\begin{cases}x=-3\\x=-5\end{cases}\)