Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - Để biểu thức trên được xác định thì : \(x^2+x+1\ne0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy biểu thức luôn được xác định với mọi x .
b, - Để biểu thức trên được xác định thì : \(4x^2+2x+3\ne0\)
Mà \(4x^2+2x+3=\) \(x^2+\frac{x}{2}+\frac{3}{4}=\left(x+\frac{1}{4}\right)^2+\frac{11}{16}>0\)
Vậy biểu thức luôn được xác định với mọi x .
d, - Để biểu thức trên có nghĩa thì : \(3t^2-t+1\ne0\)
Mà \(3t^2-t+1=3\left(t^2-\frac{t}{3}+\frac{1}{3}\right)=3\left(\left(t-\frac{1}{6}\right)^2+\frac{11}{36}\right)>0\)
Vậy biểu thức luôn được xác định với mọi x .
sửa: a) (t+1) / (3t^2-t+1) - (2t^2-3) / 3 b) I2-3tI / (2t^2+4t+5) + (t-1) / 2
Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
a: \(M=2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]-3\left[\left(a+b\right)^2-2ab\right]\)
\(=2\left(1-3ab\right)-3\left(1-2ab\right)\)
\(=2-6ab-3+6ab=-1\)
b: \(4x^4+2x^2+a⋮x-2\)
\(\Leftrightarrow4x^4-8x^3+8x^3-16x^2+14x^2-56+a+56⋮x-2\)
=>a+56=0
=>a=-56
c: \(A=x^2+8x+16+4y^2+4y+1-34\)
\(=\left(x+4\right)^2+\left(2y+1\right)^2-34>=-34\)
Dấu = xảy ra khi x=-4 và y=-1/2
d: \(\left(x+1\right)\left(2-x\right)-\left(3x+5\right)\left(x+2\right)=-4x^2+2\)
\(\Leftrightarrow2x-x^2+2-x-3x^2-6x-5x-10=-4x^2+2\)
=>-4x^2-10x-8=-4x^2+2
=>-10x=10
=>x=-1
x^2-5x-3=0
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-3\right)=25+12=37\)>0
=>PT có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5-\sqrt{37}}{2}\\x_2=\dfrac{5+\sqrt{37}}{2}\end{matrix}\right.\)
e: \(\left(a-b\right)^2+4ab\)
\(=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
1, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)
Từ (1), (2) và (3) suy ra:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\) \(\xrightarrow[]{}\) đpcm
5. a, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)
\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)
\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)
Từ (1),(2) và (3) suy ra:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
mà x+y+z=3
=>\(x^2+y^2+z^2+3\ge2.3=6\)
<=> \(x^2+y^2+z^2\ge6-3=3\)
<=> \(A\ge3\)
Dấu "=" xảy ra khi x=y=z=1
Vậy GTNN của A=x2+y2+z2 là 3 khi x=y=z=1
b, Ta có: x+y+z=3
=> \(\left(x+y+z\right)^2=9\)
<=> \(x^2+y^2+z^2+2xy+2yz+2xz=9\)
<=> \(x^2+y^2+z^2=9-2xy-2yz-2xz\)
mà \(x^2+y^2+z^2\ge3\) (theo a)
=> \(9-2xy-2yz-2xz\ge3\)
<=> \(-2\left(xy+yz+xz\right)\ge3-9=-6\)
<=> \(xy+yz+xz\le\dfrac{-6}{-2}=3\)
<=> \(B\le3\)
Dấu "=" xảy ra khi x=y=z=1
Vậy GTLN của B=xy+yz+xz là 3 khi x=y=z=1
1) Biến đổi A, ta được:
\(A=\frac{x-2+7}{x-2}=1+\frac{7}{x-2}\)
Do đó:
\(A< 1\Rightarrow1+\frac{7}{x-2}< 1\Rightarrow\frac{7}{x-2}< 0\left(1\right)\)
Mà 7>0 nên:
\(\left(1\right)\Rightarrow x-2< 0\Rightarrow x< 2\)
2)
+) Biến đổi B, ta được:
\(B=\frac{3\left(x-2\right)+2x^2-x-19-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\\ =\frac{3x-6+2x^2-x-19-x^2-2x}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-25}{x^2-4}\left(đpcm\right)\)
+) Từ 1) và 2), ta suy ra:
\(P=\frac{B}{A}=\frac{\frac{x+5}{x-2}}{\frac{\left(x-5\right)\left(x+5\right)}{\left(x-2\right)\left(x+2\right)}}=\frac{1}{\frac{x-5}{x+2}}=\frac{x+2}{x-5}\)
3) Biến đổi P, ta được:
\(P=\frac{x-5+3}{x-5}=1+\frac{3}{x-5}\)
P nguyên khi và chỉ khi \(\frac{3}{x-5}\) nguyên, hay \(x-5\inƯ\left(3\right)\)
Ta có bảng:
x-5 | -3 | -1 | 1 | 3 |
x | 2 | 4 | 6 | 8 |
Vậy ta có 4 giá trị của x trên thoả mãn đề bài.
Chúc bạn học tốt nha
HS tự chứng minh.