K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

a, - Để biểu thức trên được xác định thì : \(x^2+x+1\ne0\)

\(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy biểu thức luôn được xác định với mọi x .

b, - Để biểu thức trên được xác định thì : \(4x^2+2x+3\ne0\)

\(4x^2+2x+3=\) \(x^2+\frac{x}{2}+\frac{3}{4}=\left(x+\frac{1}{4}\right)^2+\frac{11}{16}>0\)

Vậy biểu thức luôn được xác định với mọi x .

d, - Để biểu thức trên có nghĩa thì : \(3t^2-t+1\ne0\)

\(3t^2-t+1=3\left(t^2-\frac{t}{3}+\frac{1}{3}\right)=3\left(\left(t-\frac{1}{6}\right)^2+\frac{11}{36}\right)>0\)

Vậy biểu thức luôn được xác định với mọi x .

1 tháng 4 2020

tức là cứ vô nghiệm là xác định được à @Nguyễn Ngọc Lộc

27 tháng 5 2020

\(\frac{\left(2t+1\right)^2}{4}+\frac{\left(1-t\right)3t}{3}< \frac{5t}{4}+1\)

\(\Leftrightarrow3\left(2t+1\right)\left(2t+1\right)+12t\left(1-t\right)< 15t+12\)

\(\Leftrightarrow12t^2+12t+3+12t-12t^2< 15t+12\)

\(\Leftrightarrow9t< 9\)

\(\Leftrightarrow t< 1\)

Vậy : ..............

18 tháng 2 2021

sửa:      a) (t+1) / (3t^2-t+1) - (2t^2-3) / 3                 b) I2-3tI / (2t^2+4t+5) + (t-1) / 2

24 tháng 7 2018

A = 3t^2 -t+ 6t -2 - 3t^2 - 3t -2t + 7

   = (3t^2 -3t^2) +( 6t-t-3t-2t) +(7-2)

   = 0+0+5 =5

Vậy A ko phụ thuộc vào giá trị của biến.

Những bài kiểu này bạn cứ nhân ra mà nếu kết quả ra 1 số thực thi ko phụ thuộc vào biến.

Chúc bạn học tốt.

   

Bài toán. Cho \(x,y,z>0,x+y+z\le k\). Chứng minh:\(\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}\ge\frac{\left(1+2m\right)^2}{k^2}\)Nói chung, cách chứng minh bài này không có gì khó, thậm chí có thể nói là rất dễ....
Đọc tiếp

Bài toán. Cho \(x,y,z>0,x+y+z\le k\). Chứng minh:

\(\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}\ge\frac{\left(1+2m\right)^2}{k^2}\)

Nói chung, cách chứng minh bài này không có gì khó, thậm chí có thể nói là rất dễ. Vì:;

\(\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{\left(2m\right)^2}{2\left(xy+yz+zx\right)}\)

\(\ge\frac{\left(1+2m\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{\left(1+2m\right)^2}{\left(x+y+z\right)^2}=\frac{\left(1+2m\right)^2}{k^2}\)

Vậy, vấn đề ở đây không phải là lời giải, mà là dấu đẳng thức.

Quan sát một chút ta thấy x, y, z là đối xứng nhau và điều kiện là \(x+y+z=1\).

Nên ta đoán \(\hept{\begin{cases}x=y=t\\x+y+z=k\end{cases}}\Rightarrow z=k-2t\left(0\le t\le\frac{k}{2}\right)\)   (*)

Ta xét: \(P\left(x,y,z\right)=\frac{1}{x^2+y^2+z^2}+\frac{2m^2}{xy+yz+zx}\)

Chọn t sao cho \(P\left(t,t,k-2t\right)=\frac{\left(1+2m\right)^2}{k^2}\) 

Quy đồng lên và phân tích thành nhân tử, nó tương đương với: \(k^2m-4kmt+6mt^2-2kt+3t^2=0\)

Dùng công thức nghiệm của phương trình bậc 2, dễ có: \(t_1=\frac{k\left(1+2m+\sqrt{-2m^2+m+1}\right)}{3\left(1+2m\right)},t_2=\frac{k\left(-1-2m+\sqrt{-2m^2+m+1}\right)}{3\left(1+2m\right)}\)

Cần chú ý rằng, tùy vào tham số k, m ở từng bài mà \(-2m^2+m+1,t_1,t_2\) có thể âm hoặc dương nên sau đó ta cần..(Không biết nói  sao cho hay hết! Các bạn tự hiểu nha :D)

Với \(m=\frac{1}{\sqrt{2}}\)ta được bài https://olm.vn/hoi-dap/detail/259605114604.html

Lưu ý. Không phải lúc nào ta cũng may mắn có được như (*), có khi các biến hoàn toàn đối xứng nhưng đẳng thức lại xảy ra hoàn toàn lệch nhau! Chính vì vậy, bài trên dù dấu đẳng thức xấu nhưng ta vẫn "còn may".

Nếu không việc tìm dấu đẳng thức còn mệt hơn nhiều :D

0
NV
24 tháng 4 2020

\(\frac{t^2}{2t^2+3}+\frac{2}{1+t}-\frac{34}{33}=\frac{-35t^3+97t^2-102t+96}{33\left(t+1\right)\left(2t^2+3\right)}=\frac{\left(2-t\right)\left(35t^2-27t+48\right)}{33\left(t+1\right)\left(2t^2+3\right)}\ge0\) \(\forall t\in\left[1;2\right]\)

\(\Rightarrow\frac{t^2}{2t^2+3}+\frac{2}{1+t}\ge\frac{34}{33}\)

Dấu "=" xảy ra khi \(t=2\)

24 tháng 4 2020

cảm ơn bạn nhé !

24 tháng 4 2020

Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))

Violympic toán 8

23 tháng 4 2020

Ý em là câu b ý, câu a em chịu :v