K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

\(A=\left(x-4\right)^2-\left(x+4\right)^2-16\left(x-2\right)\)

\(=x^2-8x+16-x^2-8x-16-16x+32\)

\(=-32x+32\)

Biểu thức phụ thuộc vào giá trị của biến

21 tháng 10 2021

b) \(\left(x-3\right)^3-\left(x+3\right)^3+12\left(x+1\right)\left(x-1\right)\)

\(=\left(x^3-9x^2+27x-27\right)-\left(x^3+9x^2+27x+27\right)+12x^2-12\)

\(=-6x^2-66\)

Biểu thức này phụ thuộc vào giá trị của biến

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

27 tháng 5 2017

cố gắng là làm được

27 tháng 5 2017

câu 2:

a(b-c)-b(a+c)+c(a-b)=-2bc

ta có: 

a( b-c ) - b ( a +c )+ c(a-b)

=ab-ac-(ba+bc)+(ca-cb)

=ab-ac-ba-bc+ca-cb

=ab-ba-ac+ca-bc-cb

=0-0-bc-cb

=bc+(-cb)

=-2cb    hay -2bc

b)a(1-b)+a(a^2-1)=a(a^2-b)

Ta có:

a(1-b) + a(a^2-1)

=a-ab+(a^3-a)

=a-ab+a^3-a

=a-a-ab+a^3

=0-ab+a^3

=-ab+a^3

=a(-b +a^2)     hay a(a^2-b)

16 tháng 10 2018

\(A=\left(y-3\right)\left(y^2+3y+9\right)-\left(y^3+1\right).\)

\(A=\left(y^3-3^3\right)-\left(y^3+1\right)\)

\(A=y^3-27-y^3-1\)

\(A=-27-1\)

\(A=\left(-28\right)\)

16 tháng 10 2018

Ai nhanh nhất và đúng nhất thì mk sẽ k

11 tháng 11 2019

\(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)

Thay vào A , ta có 

\(A=\frac{a^2}{\left(b+c\right)^2-b^2-c^2}\)\(+\frac{b^2}{\left(a+c\right)^2-a^2-c^2}\)\(+\frac{c^2}{\left(a+b\right)^2-a^2-b^2}\)

=> \(A=\frac{a^2}{b^2+2bc+c^2-b^2-c^2}+\frac{b^2}{a^2+2ac+c^2-a^2-c^2}\)\(+\frac{c^2}{a^2+2ab+b^2-a^2-b^2}\)

=> \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Ta có \(a^3+b^3+c^3-3abc=\left(a^3+b^3\right)+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3ab\)

\(=\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^3-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

mà \(a+b+c=0\Rightarrow a^3+b^3+c^3-3abc=0\)

                                  => \(a^3+b^3+c^3=3abc\)

=> \(A=\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy A ko phụ thuộc vào a,b,c

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức