K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath

25 tháng 5 2016

\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)

\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)

\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)

\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)

=> không có giá trị x,y,z thỏa mãn đề

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
21 tháng 7 2016

Ta có \(5=1^2+2^2\) ; \(13=2^2+3^2\) ....

=> mẫu thức sẽ có dạng là \(n^2+\left(n+1\right)^2\)

Dễ dàng chứng ming được BĐT \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\) với mọi n dương

=> \(\frac{1}{5}< \frac{1}{2.1.2}\) ; \(\frac{1}{13}< \frac{1}{2.2.3}\)....; \(\frac{1}{2002^2+2003^2}< \frac{1}{2.2002.2003}\)

=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\right)\)

=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2002}-\frac{1}{2003}\right)\)

=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(1-\frac{1}{2003}\right)< \frac{1}{2}\)

=> Đpcm

Có j không hiểu có thể hỏi lại mk 

Chúc bạn làm bài tốt

 

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

27 tháng 10 2015

Cộng thêm 1 đơn vị vào         

30 tháng 1 2023

(x+2004-2004+4)/2000+(x-2004+2004+3)/2001=(x-2004+2004+2)/2002+(x-2004+2004+1)/2003

hay (x+2004)/2000-1+(x+2004)/2001-1=(x+2004)/2002-1+(x+2004)/2003-1

Hay (x+2004)(1/2000+1/2001)=(x+2004)(1/2002+1/2003)

Hay (x+2004)(1/2000+1/2001-1/2002-1/2003)=0

hay x+2004=0

Hay x=-2004

 

25 tháng 11 2017

a) \(\sqrt{3x-4}\) + \(\sqrt{4x+1}\) = \(-16x^2 - 8x +1\) với

ĐKXĐ :

- Vế trái \(x \ge \frac{4}{3}\)

- Vế phải : \(-16x^2 - 8x +1\) \(\ge 0\) \(\Leftrightarrow \) \(x \le \frac{\sqrt{2}-1}{4}\) hoặc \(x \le \frac{-\sqrt{2}-1}{4}\)

Hai điều kiện trái ngược nhau

Vậy phương trình vô nghiệm .

25 tháng 11 2017

Ặc sai rồi .... hiha Thông cảm

25 tháng 9 2018

Xửa đề luôn

\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}}\)

\(=\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Thê vô được

\(P=2002+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\right)=2002+\frac{1}{2}-\frac{1}{2004}\)

25 tháng 9 2018

làm sao ra 2002 vậy?