Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=\(^{5x^2+20x+2010}\)
Vì C \(\ge\)2010
Nên GTNN của C là 2010
Khi \(5x^2+20x=0\)
x=0
A=XÉT \(X\le201Ó\)
TA ĐC X-2010+X-2011=2010-X+2011-X
<=>4021-2X
=>CÓ X\(\le\)2010 =>-X\(\le\) 2010 =>-2X\(\ge\)-4021
DẤU '' ='' XẢY RA KHI X=2010
B.,
a. Giá trị nhỏ nhất của A=\(\sqrt{2}+\frac{3}{11}\)
không có giá trị lớn nhất
b. Giá trị lớn nhất của B là \(\frac{5}{7}\) khi x=5 không có GTLN
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow c=\frac{2ab}{a+b}\)
\(\frac{a-c}{c-b}=\frac{a-\frac{2ab}{a+b}}{\frac{2ab}{a+b}-b}=\frac{\frac{a^2+ab-2ab}{a+b}}{\frac{2ab-ab-b^2}{a+b}}=\frac{a^2+ab-2ab}{2ab-ab-b^2}=\frac{a.\left(a-b\right)}{b.\left(a-b\right)}=\frac{a}{b}\)(ĐPCM)
\(\left|2x-27\right|^{2017}+\left(3y+10\right)^{2012}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)(làm tắt nha, có gì bn thêm vào)
câu 2 : | 2x - 27 |\(^{2011}\)+ ( 3y + 10 ) \(^{2012}\)=0
=> \(\left|2x-27\right|^{2011}\)lớn hơn hoặc = 0 (1)
=> \(\left(3y+10\right)^{2012}\)>hoặc = 0(2)
mà (1) + (2) =0
nên => \(\left|2x-27\right|^{2011}=0\)và \(\left(3y+10\right)^{2012}=0\)
\(\left|2x-27\right|^{2011}=0^{2011}\) \(\left(3y+10\right)^{2012}=0^{2012}\)
\(\left|2x-27\right|=0\) 3y + 10 = 0
2x = 27 3y = -10
x = 27 : 2 y = -10 : 3
x = 13,5 y = \(\frac{-10}{3}\)
Ta có : \(\frac{a}{2b}\) = \(\frac{b}{2c}\) = \(\frac{c}{2d}\) =\(\frac{d}{2a}\) =\(\frac{a+b+c+d}{2\left(a+b+c+d\right)}\) =\(\frac{1}{2}\) ( a,b,c,d>0)
\(\Rightarrow\) \(\frac{a}{2b}\) =\(\frac{1}{2}\) \(\Rightarrow\) a=b (1) \(\frac{c}{2d}\) =\(\frac{1}{2}\)\(\Rightarrow\)c=d (3)
\(\frac{b}{2c}\) = \(\frac{1}{2}\) \(\Rightarrow\) b=c (2) \(\frac{d}{2a}\)=\(\frac{1}{2}\) \(\Rightarrow\) d=a(4)
Từ (1) ,(2) ,(3) và (4) \(\Rightarrow\)a=b=c=d (5)
Từ (5) ta thấy :a=b ,a=c ,a=d
\(\Rightarrow\)\(\frac{2011a-200b}{c+d}\) + \(\frac{2011b-2010c}{a+d}\) +\(\frac{2011c-2010d}{a+b}\) + \(\frac{2011d-2010a}{b+c}\)
= \(\frac{2011a-2010b}{a+a}\) + \(\frac{2011a-2010a}{a+a}\) + \(\frac{2011a-2010a}{a+a}\) + \(\frac{2011a-2010a}{a+a}\)
= \(\frac{2011a-2010a+2011a-2010a+2011a-2010a+2011a-2010a}{2a}\)
= \(\frac{a+a+a+a}{2a}\)= \(\frac{4a}{2a}\)=2
KL : \(\frac{a}{2b}\) = \(\frac{b}{2c}\) = \(\frac{c}{2d}\) = \(\frac{d}{2a}\)(a,b,c,d>0) thì A =2
Ta có: a/5 = b/4 = c/3
=>a3/125 = b3/64 = c3/27= a.b.c/5.4.3 = -480/60 = -8
=>a3=-8.125= -1000 = -103 =>a= -10
b3=-8.64= -512 = -83 =>b= -8
c3= -8.27= -216 = -63 =>c=-6
tại sao lại là a^3/125=b^3/64=c^3/27