K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2022

1: Xét (O) có

ΔAIC nội tiếp

AC là đường kính

Do đó: ΔAIC vuông tại I

Xét ΔABC vuông tại A có AI là đường cao

nên AI^2=BI*CI

2: Xét (O) có

ΔCNA nội tiếp

CA là đườngkính

Do đó; ΔCNA vuông tại N

Xét ΔAIM vuông tại I và ΔCNM vuông tại N có

góc AMI=góc CMN

DO đó: ΔAIM đồng dạng với ΔCNM

=>MI/MN=MA/MC

=>MI*MC=MN*MA=CM^2

20 tháng 12 2017

A C B O I M N H K P O' G

a) Do I thuộc đường tròn (O), AC là đường kính nên \(\widehat{AIC}=90^o\)

Xét tam giác vuông ABC, đường cao AI, ta có:

 \(BI.CI=AI^2\)

b) Ta thấy O là trung điểm AC,OM // AI (Cùng vuông góc với BC) nên OM là đường trung bình tam giác AIC.

\(\Rightarrow IM=MC\)

Xét tam giác AIM và tam giác CNM có:

\(\widehat{IMA}=\widehat{NMC}\)  (Hai góc đối đỉnh)

\(\widehat{AIM}=\widehat{CNM}\)  (Hai góc nội tiếp cùng chắn cung AC)

\(\Rightarrow\Delta AIM\sim\Delta CNM\left(g-g\right)\Rightarrow\frac{AM}{CM}=\frac{IM}{MN}\)

\(\Rightarrow\frac{AM}{CM}=\frac{CM}{MN}\Rightarrow AM.MN=CM^2\)

c) Xét tam giác vuông IAB có PA = PI (Tính chất hai tiếp tuyến cắt nhau) 

nên \(\widehat{PAI}=\widehat{PIA}\Rightarrow\widehat{PBI}=\widehat{PIB}\Rightarrow PI=PB\) 

Suy ra PA = PB hay P là trung điểm AB.

Gọi P' là giao điểm của CK với AB.

Dễ thấy IH // AB nên áp dụng định lý Talet ta có:

\(\frac{IK}{BP'}=\frac{KC}{CP'}=\frac{KH}{AP'}\)

Mà IK = KH nên BP' = AP' hay P' là trung điểm của AB. Vậy \(P'\equiv P\)

Suy ra P, K, C thẳng hàng.

d) Gọi G là giao điểm của O'M với AC. Ta chứng minh \(\widehat{O'GC}=90^o\)

Thật vậy : \(\widehat{GMC}=\widehat{O'MI};\widehat{MCG}=\widehat{INM}=\frac{\widehat{IO'M}}{2}\) (Các góc nội tiếp cùng chắn một cung)

\(\Rightarrow\widehat{MCG}+\widehat{GMC}=\frac{\widehat{IO'M}}{2}+\widehat{O'MI}\)

Lại có \(\widehat{O'IM}=\widehat{O'IM}\Rightarrow2\widehat{O'MI}+\widehat{IO'M}=180^o\)

\(\Rightarrow\frac{\widehat{IO'M}}{2}+\widehat{O'MI}=90^o\Rightarrow\widehat{CMG}+\widehat{GCM}=90^o\)

\(\Rightarrow\widehat{O'IM}+\widehat{MIO}=\widehat{GMC}+\widehat{OCM}=90^o\)

Suy ra OI là tiếp tuyến đường tròn ngoại tiếp tam giác IMN.

22 tháng 12 2018

em có thể nhìn thấy tương lai của mình ở lớp 9 ra sao rồi!!! Nhìn bài giải mà sợ sởn cả tóc gáy luôn trời!

6 tháng 11 2021

om cái gì là olm mới đúng

15 tháng 12 2017

giúp vs sssss

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).a) cm: A,B,O,C cùng thuộc một đường tròn.b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.c) cm: BC trùng với tia phân giác của góc DHE.d) Từ D kẻ đường thẳng song song với BE, đường...
Đọc tiếp

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).

a) cm: A,B,O,C cùng thuộc một đường tròn.

b) cm: OA vuông BC tại H và OD= OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.

c) cm: BC trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.

Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.

a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.

b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.

c) cm: BC là tia phân giác của góc ABH.

d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.

0

a: Xét (O) có

ΔAIC nội tiếp

AC là đường kính

Do đó: ΔAIC vuông tại I

Xét ΔABC vuông tại A có AI là đường cao

nên \(AI^2=BI\cdot CI\)

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn nàyb/  Cho MO = 2R CMR tam giác MAB đều 2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn3/ Cho nửa đường tròn (O) đường kính AB....
Đọc tiếp

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) 

a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này

b/  Cho MO = 2R CMR tam giác MAB đều 

2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn

3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp 

4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn

Giải giúp mk vs mk đang cần gấp

1

Bài 2:

ΔOBC cân tại O

mà OK là trung tuyến

nên OK vuông góc BC

Xét tứ giác CIOK có

góc CIO+góc CKO=180 độ

=>CIOK là tứ giác nội tiếp

Bài 3:

Xét tứ giác EAOM có

góc EAO+góc EMO=180 độ

=>EAOM làtứ giác nội tiếp