K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

a) Ta có:

\(\widehat{ACK}=\widehat{A}+\widehat{AEC}\) ( tính chất góc ngoài của tam giác ).

=> \(\widehat{ACK}=\widehat{A}+90^0\) (1).

\(\widehat{ABH}=\widehat{A}+\widehat{ADB}\) ( tính chất góc ngoài của tam giác ).

=> \(\widehat{ABH}=\widehat{A}+90^0\) (2).

Từ (1) và (2) => \(\widehat{ABH}=\widehat{ACK}.\)

Hay \(\widehat{ABD}=\widehat{ACE}.\)

b) Xét 2 \(\Delta\) \(ABH\)\(KCA\) có:

\(BH=CA\left(gt\right)\)

\(\widehat{ABH}=\widehat{ACK}\left(cmt\right)\)

\(AB=CK\left(gt\right)\)

=> \(\Delta ABH=\Delta KCA\left(c-g-c\right)\)

=> \(AH=AK\) (2 cạnh tương ứng) (đpcm).

Chúc bạn học tốt!

10 tháng 2 2018

Giải một ý thôi

A B C D E K H

Ta có: \(\widehat{ACK}=\widehat{A}+\widehat{AEC}=\widehat{A}+90^o\)( tính chất góc ngoài)

\(\widehat{ABH}=\widehat{A}+\widehat{ADB}=\widehat{A}+90^o\)( tính chất góc ngoài)

\(\Rightarrow\widehat{ACK}=\widehat{ABH}\)

Xét tam giác ABH và tam giác KCA có:

\(\Rightarrow\Delta ABH=\Delta KCA\left(c-g-c\right)\hept{\begin{cases}BH=CA\left(gt\right)\\\widehat{ABH}=\widehat{KCA}\left(cmt\right)\\AB=CK\left(gt\right)\end{cases}}\)

\(\Rightarrow AH=AK\)(cạnh tương ứng) 

=> đpcm

10 tháng 2 2018

Bạn vẽ hình đi mk làm cho nha

17 tháng 3 2020

mk đã giải cho bạn ở trên rồi nha!

7 tháng 2 2018

B B C C A A D D E E H H K K

a) Do tam giác ABC cân tại A nên \(AB=AC;\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Vậy thì \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow\widehat{KDC}=\widehat{HEB}\)

Lại có DC = DB + BC = CE + BC = BE

Vậy thì \(\Delta DKC=\Delta EHB\)  (Cạnh huyền góc nhọn)

\(\Rightarrow BH=CK\)

c) Xét hai tam giác vuông ABH và ACK có : 

BH = CK

AC = AC

\(\Rightarrow\Delta BAH=\Delta CAK\)  (Cạnh huyền - cạnh góc vuông)

BTVN đây , nhờ mọi người giải giùm:1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:a,\(\Delta\)ABD = \(\Delta\)ACEb, \(\Delta AED\)cânc, AH là đường trung trực của ED.d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)= \(\widehat{DKC}\)2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy...
Đọc tiếp

BTVN đây , nhờ mọi người giải giùm:

1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:

a,\(\Delta\)ABD = \(\Delta\)ACE

b, \(\Delta AED\)cân

c, AH là đường trung trực của ED.

d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)\(\widehat{DKC}\)

2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Vẽ DH, EK \(\perp\)BC. CMR: a, HB=CK

b, \(\widehat{AHB}\)\(\widehat{AKC}\)

c,HK // DE

d. \(\Delta AHE\)\(\Delta AKD\)

3/ Cho \(\widehat{xOy}\)và tia phân giác Ot. Trên tia Ot lấy điểm M, trên các tia Õ và Oy lần lượt lấy các điểm A và B sao cho OA=OB. Gọi H là giao điểm của Ab và Ot.CMR:

a, MA = Mb

b, OM là trung trực của AB

c, Cho AB = 6cm, OA=5cm. Tính OH

( Ko gấp lắm nên từ từ giải rõ ràng, đúng kết quả nhé)

 

3
11 tháng 2 2018

1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC

A B C D E H K

a) Xét tam giác ABD và tam giác ACE có:

\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)

b) AE=AD(vì tam giác ABD=tam giác ACE 

=> tam giác AED cân tại A 

c) Xem lại đề

d) Xét tam giác BCK có:

\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)

=> CD là đường trung trực của BK

=> BC=CK

=> tam giác BCK cân tại C

=>\(\widehat{CBK}=\widehat{CKB}\)

Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)

=> góc ECB= góc CKB 

11 tháng 2 2018

3) Đề là: 

Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH: 
a/ MA = MB 
b/ OM là đường trung trực của AB 
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ?  (bn viết khó hiểu qá nên mk xem lại trong vở)

Tự vẽ hình!

a/ Xét tam giác OAM và tam giác OBM, có:

Cạnh OM là cạnh chung

OA = OB (gt)

góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)

=> Tam giác OAM = tam giác OBM (c.g.c)

=> MA = MB ( 2 cạnh tương ứng)

b/ Ta có: MA = MB (cmt)

=> Tam giác AMB là tam giác cân

=> Góc MAH = góc MBH

Xét tam giác AMH và tam giác BMH, có:

góc MAH = góc MBH ( cmt)

MA = MB ( cmt)

góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)

=> tam giác AMH và tam giác BMH ( g.c.g)

=> AH = HB ( 2 cạnh tương ứng)

=> H là trung điểm của AB (1)

Vì tam giác AMH = tam giác BMH (cmt)

=>góc MHA = góc MHB ( 2 góc tương ứng)

mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)

=> góc MHA = góc MHB= 180 độ : 2 = 90 độ

=> MH vuông góc với AB (2)

Từ (1) và (2)

=> MH là đường trung trực của AB

=> OM là đường trung trực của AB ( vì H thuộc OM )

c/ Vì H là trung điểm của AB (cmt)

=> AH =HB = AB : 2 = 6 :2 = 3 (cm)

Xét tam giác OAH vuông tại H  có: OA2 = OH2 + AH2 ( định lí Py-ta-go)

=> 52 = OH2 + 32 

=> 25 = OH2 + 9

=> OH2 = 25 - 9

=> OH2 = 16

\(\Rightarrow OH=\sqrt{16}\)

\(\Rightarrow OH=4cm\)

a: Ta có: AB\(\perp\)AC

KE\(\perp\)AC

Do đó: AB//KE

b: Ta có: AB//KE

nên \(\widehat{ABC}=\widehat{KEC}\)

Xét ΔACB vuông tại A và ΔKCE vuông tại K có

CA=CK

\(\widehat{ACB}=\widehat{KCE}\)

Do đó:ΔACB=ΔKCE

Suy ra:CB=CE