Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta thấy A < 1
=> A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)
Vậy A < B
Bài 2:
Ta thấy C < 1
=> C = \(\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)
Vậy C < D
A=\(\frac{98^{99}+1}{98^{89}+1}>1\) =>\(A=\frac{98^{99}+1}{98^{89}+1}>\frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}\)
\(=\frac{98.\left(98^{98}+1\right)}{98.\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)
Vậy C>D
\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
\(B=\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1\)
\(B=\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}\)
\(B=100\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)\)
Ta có: \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=\frac{1}{100}\)
Vậy...
P/s: Hoq chắc
#)Giải :
\(B=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}\)
\(B=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+...+\left(\frac{98}{2}+1\right)\)
\(B=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)
\(B=100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}=100\)
a) \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow3A=A+2A=2^{101}-2\)
\(\Rightarrow A=\frac{2^{101}-2}{3}\)
b) \(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
\(\Rightarrow4B=B+3B=3^{101}+1\)
\(\Rightarrow B=\frac{3^{101}+1}{4}\)
\(A=\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{\left(\frac{101-1}{1}+1\right)\left(\frac{101+1}{2}\right)}{\left(\frac{101-1}{2}+1\right)\left(\frac{101+1}{2}\right)-\left(\frac{100-2}{2}+1\right)\left(\frac{100+2}{2}\right)}=\frac{101.51}{51.51-50.51}\frac{101.51}{51}=101\)
Ta có:
2A = 2 + 22 +...+2100
2A - A = (2-2) + (22 - 22) +....+2100 - 1
A = 2100 - 1= 4.298 - 1
Ta so sánh: 5.298 và 4.298 - 1
Vì 298 = 298 ; 5 > 4
=> 5.298 > A