Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi độ dài cạnh đáy là $x$
Hạ đường cao $SH$ của hình chóp. Do đây là hình chóp tứ giác đều nên $H$ là tâm của hình vuông $ABCD$
Từ $H$ kẻ \(HE\perp AB\)
\(\Rightarrow \angle ((SAB),(ABCD))=\angle (HE,SE)=\angle SEH=30^0\)
\(\Rightarrow \frac{HE}{SE}=\cos SEH=\cos 30=\frac{\sqrt{3}}{2}\)
Mà \(HE\parallel AD\Rightarrow \frac{HE}{AD}=\frac{HB}{BD}=\frac{1}{2}\Leftrightarrow HE=\frac{x}{2}\)
Do đó: \(SE=\frac{x}{\sqrt{3}}\)
Diện tích mặt bên: \(S_{SAB}=\frac{SE.AB}{2}=\frac{\sqrt{3}a^2}{6}\)
\(\Leftrightarrow \frac{x^2}{2\sqrt{3}}=\frac{\sqrt{3}a^2}{6}\Leftrightarrow x^2=a^2\Leftrightarrow x=a\)
\(\frac{SH}{HE}=\tan SEH=\tan 30=\frac{\sqrt{3}}{3}\Rightarrow SH=\frac{\sqrt{3}}{3}.\frac{a}{2}=\frac{\sqrt{3}}{6}a\)
Vậy: \(V=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{3}a}{6}.a^2=\frac{\sqrt{3}a^3}{18}\)
) Gọi P là tr/điểm AS
=> SA v/góc BP (t/giác SAB đêu)
SA v/góc BM =>SA v/góc (BPM)
Gọi P, Q lần lượt là tr/điểm AS và AJ
=> PQ là đ/t/bình t/giác ASJ
=> SJ // PQ. Mặt khác, t/giác SAJ có:
vuông tại S
=> AS v/góc SJ => AS v/góc PQ
Lại có: AS v/góc BP (t/giác SAB đều) => AS v/góc (BPQ) => AS v/góc BQ, lúc đó M là giao điểm BQ và CD.
AB // JM => . Trong t/giác vuông ADM có:
Ta có khối bát diện đều ABCDEF, cạnh a. Do MN // (DEBF) nên giao của mặt phẳng (OMN) với mặt phẳng (DEBF) là đường thẳng qua O và song song với MN
Ta nhận thấy đường thẳng này cắt DE và BF tại các trung điểm P và S tương ứng của chúng. Do mặt phẳng (ADE) song song với mặt phẳng (BCF) nên (OMN) cắt (BCF) theo giao tuyến qua S và song song với NP. Dễ thấy giao tuyến này cắt FC tại trung điểm R của nó. Tương tự (OMN) cắt DC tại trung điểm Q của nó. Từ đó suy ra thiết diện tạo bởi hình bát diện đã cho với mặt phẳng (OMN) là lục giác đều có cạnh bằng \(\dfrac{a}{2}\)
Do đó diện tích của nó bằng \(\dfrac{3\sqrt{3}}{8}a^2\)
Đáp án A.