K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

a) Hoành độ điểm P là :

xp = OP = OM. cos α = R.cosα

Phương trình đường thẳng OM là y = tanα.x. Thể tích V của khối tròn xoay là:

b) Đặt t = cosα => t ∈ . (vì α ∈ ), α = arccos t.

Ta có :

V' = 0 ⇔

hoặc (loại).

Từ đó suy ra V(t) lớn nhất ⇔ , khi đó : .

21 tháng 7 2018

Ta có: OP = OM.cosα = R. cosα

Phương trình đường thẳng OM đi qua O nên có dạng: y = k.x

OM tạo với trục hoành Ox 1 góc

⇒ Hệ số góc k = tanα

⇒ OM: y = x.tanα

Vậy khối tròn xoay được tạo bởi hình phẳng giới hạn bởi đường thẳng y = x.tanα; y = 0; x = 0; x = R.cosα quay quanh trục Ox

19 tháng 12 2017

* Ta tìm giá trị lớn nhất của P = cosα – cos3α

Giải bài 5 trang 121 sgk Giải tích 12 | Để học tốt Toán 12

22 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Do đó bán kính đường tròn \(\left(S\right)\cap\left(S'\right)\) bằng \(\dfrac{10\sqrt{41}}{41}a\)

22 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

22 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay