K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

Chọn B

Gọi I là trung điểm AB, J là trung điểm CD

Từ AC=AD=BC=BD =>IJ chính là đoạn vuông góc chung của 2 đường thẳng AB và CD

=> IJ = a

Gọi O là điểm cách đều 4 đỉnh => O là tâm mặt cầu ngoại tiếp tứ diện ABCD

=> O nằm trên IJ => Ta cần tính OA

Ta có:

17 tháng 10 2019

Chọn A

Gọi M,N lần lượt là trung điểm của AB và CD.

Khi đó

26 tháng 8 2019

Đáp án C

Phương pháp giải:

Áp dụng công thức tính nhanh thể tích của tứ diện gần đều, đưa bài toán tính khoảng cách về bài toán tìm thể tích chia cho diện tích đáy (tính theo công thức Hê – rông)

Lời giải: 

8 tháng 1 2018

25 tháng 9 2019

Đáp án D

1 tháng 12 2018

Đáp án C

Gọi M, N lần lượt là trung điểm của AB, CD

Ta có: Δ B C D = Δ A C D ⇔ B N = A N ⇒ Δ A B N cân

⇒ M N ⊥ A B

Tương tự, ta chứng minh được M N ⊥ C D ⇒ M N là đoạn vuông chung của AB

CD.

Xét tam giác ABN có:  A N = B N = a 3 2 ; A B = a

M N = A N 2 − A M 2 = A N 2 − A B 2 4 = a 3 2 2 − a 2 4 = a 2 2

Vậy khoảng cách giữa hai đường thẳng AB, CD là:  a 2 2

13 tháng 8 2019

Đáp án A

Vì B C 2 = B A 2 + A C 2 nên ∆ A B C vuông tại A.

Gọi  K là hình chiếu của A lên BC, H là hình chiếu của A lên DK.

Ta có  1 A H 2 = 1 A D 2 + 1 A K 2 = 1 A D 2 + 1 A B 2 + 1 A C 2  

= 1 4 2 + 1 4 2 + 1 3 2 = 17 72 ⇒ d A ; A B C D = A H = 72 17 = 12 34

26 tháng 7 2017

Đáp án A