Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: A là tập con của B
A là tập con của C
A là tập con của D và ngược lại
Bài 1
a, A = {- 1; - 6; 4}
b, B = {-3 ; \(\pm1\); 3; 5; 7; 9}
Bài 2
a, (- 7; 0] \(\cap\) [- 4; 9) = [-4 ; 0]
b, [- 2; 2] \ [1; +∞) = [- 2 ; 1)
c, (- ∞; 5) \(\cup\) [-2 ; 5] = (- ∞; 5]
d, A = [-3 ; 1] và B = (-1; +∞)
Vậy A \(\cap\) B = ( - 1; 1]
Lời giải:
\(\frac{1}{|x-1|}>2\Leftrightarrow \left\{\begin{matrix} |x-1|\neq 0\\ |x-1|< \frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\neq 1\\ \frac{-1}{2}< x-1< \frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1\\ \frac{1}{2}< x< \frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow A=(\frac{1}{2}; \frac{3}{2})\setminus \left\{1\right\}\)
\(\Rightarrow R\setminus A=(-\infty;\frac{1}{2}]\cup [\frac{3}{2};+\infty)\cup \left\{1\right\}\)
Hình:
2/|1-x|>=3
=>(2-3|x-1|)/|x-1|>=0
=>2-3|x-1|>=0
=>3|x-1|<=2
=>|x-1|<=2/3
=>-2/3<=x-1<=2/3
=>1/3<=x<=5/3
A=[1/3;5/3]
|x+1|=2
=>x+1=2 hoặc x+1=-2
=>x=1 hoặc x=-3
B={1;-3}
A=[1/3;5/3]
A giao B={1}
A giao B=[1/3;5/3] hợp {-3}
A\B=[1/3;5/3]\{1}
1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử
Đáp án A