Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)
DH=15(cm)
\(OH=3\sqrt{15}\left(cm\right)\)
\(OC=\sqrt{OH^2+CH^2}=\sqrt{81+135}=6\sqrt{6}\left(cm\right)\)
\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)
trong ΔDEFΔDEF vuông tại D có
DK2=EK.KFDK2=EK.KF(đlý)⇒KF=DK2EK=628⇒KF=DK2EK=628=4,5
ta có:EF=EK+KF=8+4,5=12,5
DE2=EF.EK(đlý)DE2=EF.EK(đlý)=12,5.8=100⇒DE=10⇒DE=10
DF2=EF.KFDF2=EF.KF(đlý)=12,5.4,5=56,25⇒⇒DF=7,5
tan ∠DEM = \(\frac{DM}{DE}\) = \(\frac{3,75}{7,5}\) = \(\frac{1}{2}\)
\(\frac{DF}{DE+EF}\) = \(\frac{10}{7,5+12,5}\) = \(\frac{10}{20}\) = \(\frac{1}{2}\)
\(\Rightarrow\) tan ∠DEM = \(\frac{DF}{DE+EF}\) ( = \(\frac{1}{2}\) )
Bài 1:
\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)
\(DH=15\left(cm\right)\)
\(OC=\sqrt{9\cdot24}=6\sqrt{6}\left(cm\right)\)
\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)
\(OH=3\sqrt{15}\left(cm\right)\)
D E F H I K C G x y z
a) K là điểm đối xứng với H qua DE => DE là trung trực của KH => DH=DK (1)
I là điểm đối xứng với H qua DF => DF là trung trực của IH => DH=DI (2)
Từ (1) và (2) => DI=DK (đpcm).
b) Gọi giao điểm của IK và DF là G
Gọi Cx là tia đối của CH ; Gy là tia đối của GH; Hz là tia đối của HC
Ta có: CE là trung trực của KH => CH=CK => CE là phân giác của ^KCH
=> CD là phân giác của ^ICx (hay ^GCx)
Tương tự: GD là phân giác của ^CGy
Xét \(\Delta\)HCG: ^CGy và ^GCx là 2 góc ngoài; CD và GD lân lượt là phân giác của ^GCx và ^CGy
Mà CD giao GD tại D => HD là phân giác ^CHG
Lại có: ^CHG và ^GHz là 2 góc kề bù;
HD là phân giác của ^CHG (cmt). Mà HD \(\perp\)HF => HF là phân giác của ^GHz
Xét \(\Delta\)HCG: ^GHz và ^HGI là 2 góc ngoài
HF là phân giác ^GHz, GF là phân giác ^HGI. HF giao GF tại F
=> CF là phân giác ^HCG
Thấy: ^HCG và ^KCH là 2 góc kề bù.
Mà CE và CF lần lượt là phân giác ^KCH và ^HCG => CE\(\perp\)CF hay CF\(\perp\)DE (đpcm).
\(\dfrac{DF}{EF}=\dfrac{4}{5}\)
\(\Leftrightarrow DF=\dfrac{4}{5}EF\)
\(\Leftrightarrow DF=24\left(cm\right)\)
\(\Leftrightarrow FE=30\left(cm\right)\)
\(\Leftrightarrow DI=14.4\left(cm\right)\)