a) Biết AB = 12cm, B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

\(a,AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)

Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{192}{20}=9,6\left(cm\right)\)

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{16}{20}=\dfrac{4}{5}\approx\sin53^07'\Leftrightarrow\widehat{B}\approx53^07'\)

20 tháng 10 2021

Cảm ơn bạn !!!

30 tháng 5 2021

https://thi.tuyensinh247.com/de-thi-thu-vao-lop-10-mon-toan-lan-3-phong-gddt-gia-loc-2016-c31a28113.html

29 tháng 8 2015

a) Tam giác ABH vuông tại H, HE là đường cao

\(\Rightarrow AH^2=AE.AB\)(1)

Tam giác AHC vuông tại H, HF là đường cao

\(\Rightarrow AH^2=AF.AC\)(2)

từ (1) và (2) nên AE.AB=AF.AC(đpcm)

b) Tam giác ABC vuông tại A, AH là đường cao

\(\Rightarrow AB^2=BH.BC\)(3)

Tam giác BIC vuông tại B, BA là đường cao

\(\Rightarrow AB^2=IA.IC\) mà theo (3) thì \(BH.BC=IA.IC\left(\text{đ}pcm\right)\)

c) Tam giác ABC vuông tại A, đường cao AH

\(AH^2=BH.CH\Leftrightarrow AH^2=9.16=144\Leftrightarrow AH=12\)(cm)

BC=9+16=25(cm)

Tam giác ABC vuông tại A, AH là đường cao

\(AB^2=BH.BC=9.25=225\Leftrightarrow AB=15\)

\(AC^2=CH.BC=16.25=400\Leftrightarrow AC=20\)

Tam giác ABC có AD là phân giác

\(\frac{AB}{AC}=\frac{BD}{CD}\Leftrightarrow\frac{15}{20}=\frac{BD}{CD}\Leftrightarrow\frac{15}{BD}=\frac{20}{CD}=\frac{15+20}{BD+CD}=\frac{35}{25}=\frac{7}{5}\)

\(\Leftrightarrow BD=\frac{15.5}{7}=\frac{75}{7}\)\(\Leftrightarrow DH=BD-BH=\frac{75}{7}-9=\frac{12}{7}\)

Áp dụng định lý Py-ta-go vào tam giác vuông AHD:

\(AD^2=DH^2+AH^2=\frac{144}{49}+144=\frac{7200}{49}\Rightarrow AD=\frac{60\sqrt{2}}{7}\)

d) Tam giác ABC vuông tại A, AH là đường cao

\(AB^2=BH.BC\);\(AC^2=CH.BC\)

\(\Rightarrow\frac{AB^2}{AC^2}=\frac{HB.BC}{CH.BC}=\frac{BH}{CH}\left(\text{đ}pcm\right)\)

Còn câu e chờ mình xíu

 

 

 

 

 

 

 

29 tháng 8 2015

c) Ta sẽ chứng minh bổ đề sau để dễ dàng tính: Cho \(\Delta\)ABC vuông tại A đường phân giác AD. Chứng minh: \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)

C/m: Tự kẻ hình nha .Kẻ DH // AB => DH vuông góc AC. Vì \(\Delta\)ADH vuông tại H có góc DAH=90 nên \(\Delta\)ADH vuông cân tại H

=> \(AD=\sqrt{2}DH\Rightarrow DH=\left(\frac{AD}{\sqrt{2}}\right)\)

Ta có DH // AB => \(\frac{DH}{AB}=\frac{HC}{AC}=\frac{AC-AH}{AC}\) vì (HC=AC-AH)

 

10 tháng 9 2021

a, Gọi I là trung điểm AB 

Xét tam giác AEB vuông tại E, I là trung điểm 

=> \(EI=AI=IB=\frac{AB}{2}\)(1) 

Xét tam giác ADB vuông tại D, I là trung điểm 

=> \(DI=AI=IB=\frac{AB}{2}\)(2) 

Từ (1) ; (2) => A ; D ; B ; F cùng nằm trên đường tròn (I;AB/2)

b, Gọi O là trung điểm AC 

Xét tam giác AFC vuông tại F, O là trung điểm 

=> \(FO=AO=CO=\frac{AC}{2}\)(3) 

Xét tam giác CDA vuông tại D, O là trung điểm 

=> \(DO=AO=CO=\frac{AC}{2}\)(4) 

Từ (3) ; (4) => A ; D ; C ; F cùng nằm trên đường tròn (O;AC/2)

c, Gọi T là trung điểm BC

Xét tam giác BFC vuông tại F, T là trung điểm 

=> \(FT=BT=CT=\frac{BC}{2}\)(5) 

Xét tam giác BEC vuông tại E, T là trung điểm 

=> \(ET=BT=CT=\frac{BC}{2}\)(6) 

Từ (5) ; (6) => B ; C ; E ; F cùng nằm trên đường tròn (T;BC/2)

15 tháng 5 2021

Hình tự vẽ nha

a) Vì A,B,D thuộc ( O; AD/2 ) 

\(\Rightarrow\widehat{ABD}=90^0\)

Vì \(EF\perp AD\Rightarrow\widehat{EFA}=90^0\)

Xét tứ giác  ABEF có góc \(\widehat{ABE}=\widehat{AFE}=90^0\)

mà 2 góc này ở vị trí đối nhau trong tứ giác ABEF

\(\Rightarrow ABEF\)nội tiếp ( dhnb )

b)  Vì A,C,D thuộc ( O; AD/2 ) 

\(\Rightarrow\widehat{ECD}=90^0\) 

Xét tứ giác EFDC có: \(\widehat{ECD}=\widehat{EFD}=90^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác EFDC

\(\Rightarrow EFDC\)nội tiếp

\(\Rightarrow\widehat{ECF}=\widehat{EDF}\)( cùng chắn cung EF )

Lại có: \(\widehat{BCA}=\widehat{BDA}\left(=\frac{1}{2}sđ\widebat{AB}\right)\)

\(\Rightarrow\widehat{BCA}=\widehat{ACF}\)

=> AC là phân giác góc BCF