Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
Bài 3 :
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có :
\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự ta có:
\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\)
\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
\(+\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}+\frac{z}{y+z}\right)\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}.6=\frac{3}{2}\)
Trên tia đối của tia BA lấy I sao cho BI = DQ
\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)
Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)
Ta có: \(AP+AQ+PQ=2AB\)
\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)
\(\Rightarrow PQ=PB+QD\)
\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)
\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)
a)xét tam giác ADB và tam giác ABC có :
góc ABD = ACB
góc A chung
vậy tam giác ADB đồng dạng tam giác ABC
Suy ra: AD/AB=AB/AC suy ra AB bình phương = AD.AC
b) Ta có AE là phân giác góc A nên:
AC/AB =EC/EB
AD/AB=FD/FB
Mặt khác: AD/AB=AB/AC
Suy ra: FD/FB=EB/EC
1. ĐKXĐ: \(\left\{{}\begin{matrix}a;b\ge0\\a\ne9\end{matrix}\right.\)
\(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{a}\left(\sqrt{b}+2\right)-3\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)}\)
\(=\frac{2\sqrt{a}+3\sqrt{b}}{\left(\sqrt{a}-3\right)\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}=\frac{\left(\sqrt{a}+3\right)\left(2\sqrt{a}+3\sqrt{b}\right)+\left(\sqrt{ab}-6\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)
\(=\frac{2a+9\sqrt{b}+a\sqrt{b}+18}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}=\frac{a\left(\sqrt{b}+2\right)+9\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}\)
\(=\frac{\left(a+9\right)\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}=\frac{a+9}{a-9}\)
b .
\(\frac{a+9}{a-9}=\frac{b+10}{b-10}\Leftrightarrow\frac{a-9+18}{a-9}=\frac{b-10+20}{b-10}\)
\(\Leftrightarrow1+\frac{18}{a-9}=1+\frac{20}{b-10}\Leftrightarrow\frac{18}{a-9}=\frac{20}{b-10}\)
\(\Leftrightarrow18\left(b-10\right)=20\left(a-9\right)\Leftrightarrow18b=20a\Leftrightarrow\frac{a}{b}=\frac{9}{10}\)
3.
\(x^2-4x+4-\left(x^2+6x+9\right)=2x-10\)
\(\Leftrightarrow-10x-5=2x-10\)
\(\Leftrightarrow12x=5\)
b. \(\Leftrightarrow\left\{{}\begin{matrix}17\left(x-y\right)+7\left(2x+y\right)=833\\19\left(4x+y\right)+5\left(y-7\right)=1425\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}31x-10y=833\\76x+24y=1460\end{matrix}\right.\)
Bấm máy