Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ vuông ABC có
AM là trung tuyến
=> AM = BM = CM
=> ∆AMC cân tại M
=> MAC = MCA
Xét ∆ABH có :
BHA + BAH + ABH = 180°
=> BAH + ABH = 90°
Xét ∆ABC có :
ABC + BCA + BAC = 180°
=> ABC + ACB = 90°
=> BAH = MCA
Mà MAC = MCA (cmt)
=> BAH = MAC
b) Gọi I là giao điểm DE và AH
Xét tứ giác DHEA có :
BAC = 90° (gt)
MDA = 90° ( MD\(\perp\)AB )
HEA = 90° ( HE\(\perp\)AC)
=> DHEA là hình chữ nhật
=> I là trung điểm DE và HA
=> DI = IA
=> ∆IDA cân tại I
=> IDA = IAD (1)
Vì MAC = MCA (2) (cmt)
Ta có :
DAI + MAC = 90°
MCA + MAC = 90°
=> DAI = MCA ( cùng phụ với MAC )(3)
Từ (1) (2)(3)
=> DAI = MAC = MCA
Vì I là trung điểm DE
=> ∆IAE cân tại I
=> IAE = IEA
Gọi giao điểm DE,AM là O
Xét ∆ADE có :
DAE + ADE + DEA = 180°
=> ADE + DEA = 90° .
Mà IAE = IEA (cmt)
MAC = ADI (cmt)
=> MAE + IEA = 90°
Xét ∆IAE có :
IAE + IEA + AIE = 180°
=> AIE = 90°
Hay AM \(\perp\)DE(dpcm)