K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

cái thể loại 0 điểm hỏi đáp , đăng toán hình mà éo vẽ hình không = rác rưởi

 Vì \(\Delta ABC\) cân tại A nên AB=AC (đ/n) và \(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta EBC\)​  và \(\Delta DCB\)​  có : 

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

\(\widehat{BEC}=\widehat{CDB}\) (=90o)

=> \(\Delta EBC\)=\(\Delta DCB\)(cgv-gnk)

=> BD=CE( cctư) (đpcm)

b) Vì \(\Delta EBC\)=\(\Delta DCB\)nên \(\widehat{IBC}=\widehat{ICB}\)(cgtư)

Xét\(\Delta IBC\)Có :\(\widehat{IBC}=\widehat{ICB}\)=> \(\Delta IBC\)cân=> IB=IC(đ/n)

c) Gọi giao điểm của AI và BC là O

Vì \(\widehat{ABC}=\widehat{ACB}\) và  \(\widehat{IBC}=\widehat{ICB}\) nên \(\widehat{ABI}=\widehat{ACI}\)

Xét  \(\Delta ABI\)​  và \(\Delta ACI\)​  có : 

AB=AC

\(\widehat{ABI}=\widehat{ACI}\)

IB=IC

=> \(\Delta ABI=\Delta ACI\left(c.g.c\right)\)

=> \(\widehat{BAI}=\widehat{CAI}\left(cgtư\right)\)

Xét  \(\Delta ABO\)​  và \(\Delta ACO\)​  có : 

AB=AC

\(\widehat{ABO}=\widehat{ACO}\)

\(\widehat{BAO}=\widehat{CAO}\)

=> \(\Delta ABO=\Delta ACO\left(c.g.c\right)\)

=> \(\widehat{BOA}=\widehat{COA}\left(cgtư\right)\)

mà \(\widehat{BOA}+\widehat{COA}=180^o\)

=> \(\widehat{BOA}=\widehat{COA}\left(=90^o\right)\)

hay AI\(\perp\)BC (đpcm)

3 tháng 2 2017

E C B A D I

A)Xét tam giác ADB và tam giác AEC có 

\(\widehat{AEC}=\widehat{ADB=90}^0\left(GT\right)\)

\(AB=AC\left(GT\right)\)

\(\widehat{A}chung\)

Từ ba điều trên => tam giác ABD= tam giác AEC( G.C.G)

=> BD=CE( 2 CẠNH T/Ư)

B) Xét tam giác AED, có: \(AE=AD\)(tam giác ADB= tam giác AEC)

=> Tam giác AED là tam giác cân 

C) câu c) mk chư bt lm 

18 tháng 2 2017

c ) +)Xét tam giác AEI và tam giác ADI có :

                 \(\widehat{E}=\widehat{D}\left(=90\right)^o\)

                  AE = AD ( cmt )

                  AI chung 

=> Tam giác AEI = Tam giác ADI ( ch - cgv)

=> Góc DAI = Góc EAI ( hai góc tương ứng ) 

Mà AI nằm giữa AB và AC nên AI là đường phân giác của góc BAC( ĐPCM )

+) Gọi điểm H là giao của BC và AI .

Xét tam giác ABC có :

       BD là đường cao thứ nhất

       CE là đường cao thứ hai 

=> AH phải là đường cao thứ ba (t/c đường cao trong tam giác )

=> \(Ah⊥BC\)

Mà I thuộc AH =>  \(AI⊥BC\)