Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E I M N x
a) Vẽ tia đối của BC là Bx. Gọi giao điểm của BI và CE là M. CE giao AB tại N.
\(\Delta\)ABC cân tại A. H là trung điểm của BC => AH là đường cao của \(\Delta\)ABC => AH\(⊥\)BC.
Ta có: ^ABH+^EBx=1800-^ABE=900 (1)
\(\Delta\)AHB vuông tại H => ^ABH+^BAH=900 (2)
Từ (1) và (2) => ^EBx=^BAH => 1800-^EBx=1800-^BAH => ^EBC=^BAI
Xét \(\Delta\)ABI và \(\Delta\)BEC:
AB=BE
^BAI=^EBC => \(\Delta\)ABI=\(\Delta\)BEC (c.g.c) (đpcm)
AI=BC
=> ^BEC=^ABI (2 góc tương ứng) hay ^BEN=^NBM.
\(\Delta\)EBN vuông tại B => ^BEN+^BNE=900. Thay ^BEN=^NBM, ta được:
^NBM+^BNE=900 hay ^NBM+^BNM=900. Xét \(\Delta\)BMN có:
^NBM+^BNM=900 => ^BMN=900 => BI\(⊥\)CE tại M (đpcm).
a) Xét tam giác ABH và DBH có:
\(\widehat{AHB}=\widehat{BHD}\left(=90^o\right)\) (gt)
\(HA=HD\) (gt)
\(BH:\)cạnh chung
Do đó \(\Delta ABH=\Delta DBH\left(c.g.c\right)\)
b) Xét tam giác AHC và DHC có:
HC: (cạnh chung)
\(\widehat{AHC}=\widehat{CHD}\left(=90^o\right)\) (gt)
HA = HD (gt)
Do đó: \(\Delta AHC=\Delta DHC\left(c.g.c\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{DCB}\) (hai góc tương ứng)
Suy ra CB là tia phân giác của góc ACD
Lộn xíu :v
Choa sửa lại cái đề pài :>
Cho tam giác ABC , góc A < 90o . Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là tam giác AMB và tam giác ANC ( đoạn đầu tiên ó )
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
\(\widehat{MAC}=\widehat{BAN}\left(do\widehat{MAB}+\widehat{BAC}=\widehat{NAC}+\widehat{BAC}\right)\)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì \(\Delta AMC=\Delta ABN\)nên
\(\widehat{FMA}=\widehat{FBI}\)
mà \(\widehat{FMA}+\widehat{FMB}=45^O\)
=>\(\widehat{FBI}+\widehat{IMB}=45^O\)
Xét \(\Delta IMB\)có góc \(\widehat{IMB}+\widehat{MBI}+\widehat{BIM}\)= 180O
Mà \(\widehat{IMB}+\widehat{MBI}\)=900
=>...