Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C o M N
a) Xét tam giác BOA và tam giác AOC có:
OB=OA
OC=OA
AB=AC
=> \(\Delta BOA=\Delta AOC\)
=> góc OBA=góc OAC
b) Xét tam giác AON và tam giác BOM
có: AB=AO
BM=AN
\(\widehat{MBO}=\widehat{NAO}\)( theo a)
=> \(\Delta AON=\Delta BOM\)
=> OM=ON
=> O thuộc đường rung trực MN
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
A B C N I O M 1 1 2
a,
\(\text{Xét ∆MOB và ∆NOI có }\):
\(\text{MO = NO (gt) }\)
\(\text{ BO = OI (gt) }\)
\(\widehat{MOB}=\widehat{NOI}\)\(\text{(2 góc đối đỉnh) }\)
\(\Rightarrow\text{∆MOB = ∆NOI }\left(c.g.c\right)\)
b,
\(\text{ Vì ∆MOB = ∆NOI ( câu a) }\)
\(\Rightarrow\text{ MB = NI }\)
\(\text{BM = CN }\)
\(\Rightarrow\text{ NI = NC }\)
=>\(\text{∆NIC là ∆ cân }\)
c, \(\text{Vì ∆MOB = ∆NOI ( câu a) }\)
=> \(\widehat{B_1}=\widehat{C_1}\)
\(\text{Mà 2 góc ở vị trí so le trong }\)
=>\(\text{ BM // NI }\)
=> \(\text{AB // NI }\)
=> \(\widehat{BAN}=\widehat{ANI}\) hay \(\widehat{BAC}=\widehat{ANI}\) (1)
\(\text{mà}\) \(\widehat{ANI}\)\(\text{là góc ngoài ∆INC }\)
=> \(\widehat{ANI}\)= \(\widehat{I_2}+\widehat{IC}N\)
\(\text{Vì ∆NIC cân }\)=> \(\widehat{I_2}=\widehat{ICN}\)
=> \(\widehat{ANI}=2\widehat{I_2}\) (2)
Từ 1,2 => \(\widehat{BAC}=2\widehat{I_2}\)
hay \(\widehat{BAC}=2\widehat{NIC}\)
A M B I N C O
a) Xét tam giác MOB và tam giác ION có:
MO = ON (gt)
BO = OI (gt)
góc MOB = góc ION (đối đỉnh)
=> tam giác MOB = tam giác ION (c.g.c)
=> góc MBO = góc OIN (cặp góc tương ứng)
Mà góc MBO = góc OIN (ở vị trí so le trong) => BM // NI
b) Vì tam giác MOB = tam giác ION (câu a)
=> MB = IN (cặp cạnh tương ứng)
Mà MB = NC (gt)
=> IN = NC => Tam giác NIC cân
c) xin lỗi bn nhé ! câu c mình nghĩ ko ra, bn nhờ bn khác giúp nha !
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)