K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2019

A B C N I O M 1 1 2

a,

\(\text{Xét ∆MOB và ∆NOI có }\)

 \(\text{MO = NO (gt) }\)

 \(\text{ BO = OI (gt) }\) 

\(\widehat{MOB}=\widehat{NOI}\)\(\text{(2 góc đối đỉnh) }\)

\(\Rightarrow\text{∆MOB = ∆NOI }\left(c.g.c\right)\) 

b, 

\(\text{ Vì ∆MOB = ∆NOI ( câu a) }\)

 \(\Rightarrow\text{ MB = NI }\)

    \(\text{BM = CN }\)

\(\Rightarrow\text{ NI = NC }\)

=>\(\text{∆NIC là ∆ cân }\)

c, \(\text{Vì ∆MOB = ∆NOI ( câu a) }\)

=> \(\widehat{B_1}=\widehat{C_1}\)   

\(\text{Mà 2 góc ở vị trí so le trong }\)

=>\(\text{ BM // NI }\)

=> \(\text{AB // NI }\)

=> \(\widehat{BAN}=\widehat{ANI}\)  hay \(\widehat{BAC}=\widehat{ANI}\) (1) 

\(\text{mà}\) \(\widehat{ANI}\)\(\text{là góc ngoài ∆INC }\)

=> \(\widehat{ANI}\)\(\widehat{I_2}+\widehat{IC}N\)

\(\text{Vì ∆NIC cân }\)=> \(\widehat{I_2}=\widehat{ICN}\) 

=> \(\widehat{ANI}=2\widehat{I_2}\)   (2) 

Từ 1,2  =>   \(\widehat{BAC}=2\widehat{I_2}\)

hay \(\widehat{BAC}=2\widehat{NIC}\)

30 tháng 4 2017

A M B I N C O

a) Xét tam giác MOB và tam giác ION có:

MO = ON (gt)

BO = OI (gt)

góc MOB = góc ION (đối đỉnh)

=> tam giác MOB = tam giác ION (c.g.c)

=> góc MBO = góc OIN (cặp góc tương ứng)

Mà góc MBO = góc OIN (ở vị trí so le trong) => BM // NI

b) Vì tam giác MOB = tam giác ION (câu a)

=> MB = IN (cặp cạnh tương ứng)

Mà MB = NC (gt) 

=> IN = NC => Tam giác NIC cân 

c) xin lỗi bn nhé ! câu c mình nghĩ ko ra, bn nhờ bn khác giúp nha !

Xét tam giác BMK và tam giác CNK có:

BM=CN (gt)

Góc BKM=góc CKN (hai góc đối đỉnh)

MK=NK (K là trung điểm MN)

=> tam giác BMK=tam giác CNK (c.g.c)

=> BK=CK

=> K là trung điểm BC

=> B,K,C thẳng hàng.

4 tháng 6 2019

#)Giải :

( Hình tự vẽ nha :P )

Xét \(\Delta BMK\)và \(\Delta CNK\)có :

         BM = CN ( gt )

       \(\widehat{BKM}=\widehat{CKN}\)( hai gọc đối đỉnh )

        MK = NK ( K là trung điểm của MN )

=> \(\Delta BMK=\Delta CNK\)( c.g.c )

=> BK = CK ( hai cạnh tương ứng bằng nhau ) 

=> K là trung điểm của BC

=> B,K,C thẳng hàng 

                    #~Will~be~Pens~#

7 tháng 2 2021

giúp tui với!

29 tháng 12 2017

a)

Xét \(\Delta CIA;\Delta DIB\) có :

\(IC=ID\left(gt\right)\\ \widehat{CIA}=\widehat{DIB}\left(đ^2\right)\\ IA=IB\left(gt\right)\\ \Rightarrow\Delta CIA=\Delta DIB\left(c-g-c\right)\\ \)

b)

\(\Delta CIA=\Delta DIB\\ \Rightarrow\widehat{A}=\widehat{DBI}\)

=> BD // AC

30 tháng 12 2017

a) Xét ΔCIA và ΔDIB

Có: IA=IB (gt)

\(\widehat{CIA}=\widehat{DIB}\) (2 góc đối đỉnh)

IC=ID (gt)

⇒ ΔCIA và ΔDIB (c-g-c)

b) Do ΔCIA và ΔDIB (theo câu a)

\(\widehat{ACI}=\widehat{D}\) (2 góc tương ứng)

\(\widehat{ACI}=\widehat{D}\) ở vị trí so le trong

⇒ BD // AC

c) Gọi giao điểm giữa cạnh MN và canh BC là K

Xét ΔABC và ΔAMN

Có: AC =AN (gt)

\(\widehat{BAC}=\widehat{MAN}\left(=90^O\right)\)

AB=AM (gt)

⇒ ΔABC = ΔAMN (c-g-c)

\(\widehat{AMN}=\widehat{ABC}\) (2 góc tương ứng)

\(\widehat{ANM}=\widehat{KNB}\) (Vì 2 góc đối đỉnh)

Xét ΔAMN vuông tại A

nên: \(\widehat{KBN}+\widehat{ANM}=90^O\) (Tính chất của Δ vuông)

hay: \(\widehat{KBN}+\widehat{KNB}=90^O\)

Xét ΔKNB có:

\(\widehat{KNB}+\widehat{KBN}+\widehat{NKB}=180^O\) (Định lý tổng 3 góc của 1Δ)

hay: \(\widehat{NKB}=180^O-\left(\widehat{KNB}+\widehat{KBN}\right)\)

\(\widehat{NKB}=180^O-90^O\)

\(\widehat{NKB}=90^0\)

⇒ MN ⊥ CB (ĐPCM)