K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trên BC lấy E sao cho BD=BE,nối E với D,E với A

Ta có:\(\widehat{DBE}=\widehat{DBA}+\widehat{ABC}=\frac{180^0-140^0}{2}+\frac{180^0-100^0}{2}=20^0+40^0=60^0\)

Mà tam giác DBE có BD=BE nên tam giác DBE đều

Suy ra BD=DE=BE

Mà BD=AD nên BD=AD=DE=BE suy ra tam giác ADE cân tại D

\(\Rightarrow\widehat{DEA}=\widehat{DAE}=\frac{\left(180^0-\left(140^0-60^0\right)\right)}{2}=50^0\)

\(\Rightarrow\widehat{CEA}=180^0-\widehat{AED}-\widehat{DEB}=180^0-50^0-60^0=70^0\)

\(\Rightarrow\widehat{CAE}=180^0-\widehat{CEA}-\widehat{ACE}=180^0-70^0-40^0=70^0=\widehat{CEA}\)

Suy ra tam giác ACE cân tại C suy ra CA=CE. 

Khi đó ta có: \(BC=BE+EC=BD+AC\Rightarrow a=BD+b\Rightarrow BD=a-b\)

Chu vi tam giác ADB là AD+BD+AB=2.BD+AC=2.(a-b)+b=2a-2b+b=2a-b

Vậy chu vi tam giác ADB là 2a-b

6 tháng 2 2019

a, Chứng minh tam giác ADB=tam giác ADC

=>góc BAD=góc CAD=>AD là tia phân giác của góc BAC=>góc BAD=góc CAD=10độ

b, Do tam giác ABC cân tại A và tam giác DCB đều nên góc ABC=(180độ-20độ):2= 80độ;góc DBC= 60độ

=> góc ABD=80 độ - 60 độ=20độ

Tia BM là tia phân giác của góc ABD=> góc ABM=góc DBM=10độ

Chứng minh được tam giác ABM = tam giác BAD(g.c.g) => AM=BD mà BD =BC nên AM=BC (đpcm)

Câu hỏi của Lê Hà - Toán lớp 7 | Học trực tuyến

13 tháng 4 2019

Hình (tự vẽ)

a) ΔABE cân

Xét hai tam giác vuông ABH và EBH có:

\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)

HB là cạnh chung.

Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)

⇒ BA = BE (2 cạnh tương ứng)

⇒ ΔABE cân tại B.

b) ΔABE đều

Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.

c) AED cân 

Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)

Xét hai tam giác vuông ADH và EDH có:

AH = EH (cmt)

HD: cạnh chung

Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)

⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)

⇒ ΔAED cân tại D

d) ΔABF cân

Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong)     (1)

Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)

Thay: 60o + ABF = 180o

⇒ ABF = 180o - 60o = 120o

Xét ΔABF, ta có: 

\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)

Thay: 120o + BFA + 30o = 180o

⇒ BFA = 180 - 120 - 30 = 30 (2)

Từ (1) và (2) suy ra: ΔABF cân tại B.