K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Nếu BC2 = AC+ AB2 thì tam giác ABC vuông tại A. (Pytago)

ta có: 7,52 =  4,52 + 62 => tam giác ABC vuông tại A.

Tam giác ABC vuông tại A, đường cao AH nên: AH.BC = AC.AB <=> AH = (AC.AB)/BC <=> AH = 3,6 cm

Ta có: AB2 = BC.BH <=> BH = AB2 /BC <=> 36/7,5 = 4,8 cm

=> HC = BC - BH = 7.5 - 4.8 = 2.7 cm

15 tháng 10 2017

vẽ hình nữa nha

30 tháng 7 2018

C A B H

a) Ta có:  \(AC^2+AB^2=4,5^2+6^2=56,25\)

                  \(BC^2=7,5^2=56,25\)

suy ra:  \(AC^2+AB^2=BC^2\)

hay  tam giác ABC vuông tại A

Áp dụng hệ thức lượng ta có:

\(AH.BC=AB.AC\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=3,6\)

b)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=4,8\)

\(\Rightarrow\)\(HC=BC-BH=7,5-4,8=2,7\)

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

1 tháng 8 2017

ban tu ve hinh nha

ta co \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)

 \(\Rightarrow AB=9,AC=12\)

ap dung dl pitago vao tam giac ABC vuong  tai A

\(AB^2+AC^2=BC^2\Rightarrow BC=15\)

B. ap dung he thuc luong trong tam gia vuong ABC co 

\(AH\cdot BC=AC\cdot AB\Rightarrow AH=\frac{12\cdot9}{15}=7,2\) 

\(AB^2=BH\cdot CB\Rightarrow BH=\frac{9^2}{15}=5.4\)\(\Rightarrow CH=BC-BH=15-5,4=9.6\)

3 tháng 9 2020

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

3 tháng 9 2020

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

a: Xét ΔABC có \(BC^2=AC^2+AB^2\)

nên ΔABC vuông tại A

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot7.5=4.5\cdot6=27\)

hay AH=3,6(cm)

b: 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}BH\cdot BC=AB^2\\CH\cdot BC=AC^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=4,8\left(cm\right)\\CH=2,7\left(cm\right)\end{matrix}\right.\)

27 tháng 8 2021

có AB2+AC2=4,52+62=56,25=7,52
tam giác abc vuông tại a
=>      AH.BC=AB.AC
          AH.7,5=4,5.6
          AH.7,5=27
          AH= 3,6

https://alfazi.edu.vn/question/5b8a626cb067113822bfbc62

vào đây để nhận phần quà hấp dẫn nha

và nói là Nick lâm mời nhé 

cám ơn và hậu tạ