Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{11}+2^{12}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{11}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{11}\right)⋮3\)
b) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^9+2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^9\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+2^9\right)⋮5\)
c) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{10}\right)⋮7\)
a)Ta có 7+4+*=11+*
Mà \(0\le\)*\(\le9\)
\(\Rightarrow\)*\(\in\left(1,4,7\right)\)
Vì 7+4+* phải chia hết cho 3
a)số:912;942 chia hết cho 3 nhưng ko chia hết cho 9
số:180 chia hết cho cả 2;3;5;9
b)số đó là 1212,1242,1272
k mik nha@@@@@@@@@@@@@@@@@@
Bn nhi nguyên làm sai r vì
*=5 thui còn 2 là sai.
Vìvì nếu *=2 thì 2+5+3+2=10
10 ko chia het cho 3 nên thay sao bằng 2 là sai.
MMà *=5
10uM10uiMM
M10uM10uiMMu
a)
Tổng 17 số đầu tiên là
(6x1-3)+(6x2-3)+....+(6x17-3)
=6(1+2+3+...+17)-3x17
=6x153-17
=867
b)
Tích 100 số hạng bất kì là
(6m−3)[6(m+1)−3].......[6((m+99)−3)] (6m−3)[6(m+1)−3].......[6((m+99)−3)]
=3(2m−1)3[2(m+1)+1]......3[2(m+99)+1] =3(2m−1)3[2(m+1)+1]......3[2(m+99)+1]
=3 100 (2m−1)[2(m+1)−1].......[2(m+99)−1] =3100(2m−1)[2(m+1)−1].......[2(m+99)−1]
chia hết cho 399
Vậy tích 100 số bất kì của dãy chia hết cho 399
Nghi vấn Nobi Nobita tự hỏi tự trả lời.
Nobi Nobita và ♚Nguyễn ♛ Trấn ♜ Thành ♝ là 1.
Thứ 1: tôi thấy tất cả những câu của ♚Nguyễn ♛ Trấn ♜ Thành ♝ đều có dấu chân trả lời của Nobi nobita."cái này đã nghi rồi"
Thứ 2. thời gian trả lời đó chỉ mất 1 đến 2 phút "không thể nào".
Thứ 3: ♚Nguyễn ♛ Trấn ♜ Thành ♝ rất hay tick cho nobita. "quá nhiều dấu vết gian lận"
Lấy đâu ra kiểu công bằng đấy hả.
Ngoại lệ: trên hoc24 có quá nhiều trường hợp "hỏi tự trả lời", không phải xa lạ gì nữa, vậy càng có khả năng Nobi nobita gian lận thi cử.
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM