Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt:
\(m=4kg\)
\(t=2,5s\)
____________________________
\(\Delta p=?kg.m/s\)
Giải:
Rơi tự do ko vận tốc đầu nên v1=0
Vận tốc ở tg 2s:
\(v_2=g.t=10.2,5=25\left(m/s\right)\)
Độ biến thiên động lượng của vật:
\(\Delta p=p_2-p_1=m.\left(v_2-v_1\right)=4.\left(25-0\right)=100\left(kg.m/s\right)\)
Vậy ...
Vì vật chuyển động đều
\(\Rightarrow\overrightarrow{F}+\overrightarrow{N}+\overrightarrow{P}+\overrightarrow{F_{ms}}=\overrightarrow{0}\)
Chọn trục toạ độ có trục hoành hướng sang phải, trục tung hướng lên
\(\Rightarrow\left\{{}\begin{matrix}Ox:F.\cos\alpha-F_{ms}=0\\Oy:F.\sin\alpha+N-P=0\end{matrix}\right.\)
\(\Rightarrow F.\cos\alpha-\mu.\left(P-F.\sin\alpha\right)=0\)
\(\Leftrightarrow120.\cos60-\mu.\left(200-120.\sin60\right)=0\)
=> \(\mu=...\)
Tìm gia tốc trong trường hợp alpha= 300 thì lúc này vật chuyển động biến đổi đều nên có gia tốc, tức là \(\overrightarrow{F}+\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a}\)
Cậu chiếu lên trục toạ độ rồi phân tích, bt hệ số ma sát rồi thì tìm a ez
a)
Chọn chiều (+) hướng lên. Gốc thời gian lúc bắt đầu ném
\(y=v_0t+\frac{gt2}{2}=20t-5t^2\) (1)
\(v=v_0+gt=20-10t\) (2)
Tại điểm cao nhất v=0
Từ (2) \(\Rightarrow\) t=2(s) thay vào (1)
yM = 20(m)
b)
Khi chạm đất y=0 từ (1)\(\Rightarrow\) t=0 và t=4 (s)
Thay t = 4 (s) vào (2) \(v'=-20m\text{/}s\)
(Dấu trừ (-) vận tốc ngược với chiều dương.)
chọn hệ trục xOy như hình vẽ ta có
các lực tác dụng lên vật là: \(\overrightarrow{Fms},\overrightarrow{F},\overrightarrow{P},\overrightarrow{N}\)
theo định luật 2 Newton ta có
\(\overrightarrow{F}+\overrightarrow{Fms}+\overrightarrow{P}+\overrightarrow{N}=\overrightarrow{a}.m\left(1\right)\)
chiếu phương trình 1 lên trục Oy ta có
-P + N=0
\(\Leftrightarrow\)P=N\(\Rightarrow\)Fms=\(\mu.N=\mu.mg\)
chiếu pt 1 lên trục Ox ta có
F-Fms=am
\(\Rightarrow\)F=am-Fms=a.m-\(\mu mg\)=1,25.10-0,3.4.10=0,5(N)
Vậy ..........
O x y P N Fms F
Bài 1 :
P1 =m1g => m1 = 1(kg)
P2 = m2g => m2 =1,5(kg)
Trước khi nổ, hai mảnh của quả lựu đạn đều chuyển động với vận tốc v0, nên hệ vật có tổng động lượng : \(p_0=\left(m_1+m_2\right)v_0\)
Theo đl bảo toàn động lượng : \(p=p_0\Leftrightarrow m_1v_1+m_2v_2=\left(m_1+m_2\right)v_0\)
=> \(v_1=\frac{\left(m_1+m_2\right)v_0-m_2v_2}{m_1}=\frac{\left(1+1,5\right).10-1,5.25}{1}=-12,5\left(m/s\right)\)
=> vận tốc v1 của mảnh nhỏ ngược hướng với vận tốc ban đầu v0 của quả lựu đạn.
Bài2;
Vận tốc mảnh nhỏ trước khi nổ là :
v02=\(v_1^2=2gh\)
=> v1 = \(\sqrt{v_0^2-2gh}=\sqrt{100^2-2.10.125}=50\sqrt{3}\left(m/s\right)\)
Theo định luật bảo toàn động lượng :
\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)
p = mv = 5.50 =250(kg.m/s)
\(\left\{{}\begin{matrix}p_1=m_1v_1=2.50\sqrt{3}=100\sqrt{3}\left(kg.m/s\right)\\p_2=m_2v_2=3.v_2\left(kg.m/s\right)\end{matrix}\right.\)
+ Vì \(\overrightarrow{v_1}\perp\overrightarrow{v_2}\rightarrow\overrightarrow{p_1}\perp\overrightarrow{p_2}\)
=> p2 = \(\sqrt{p_1^2+p^2}=\sqrt{\left(100\sqrt{3}\right)^2+250^2}=50\sqrt{37}\left(kg.m/s\right)\)
=> v2= \(\frac{p_2}{m_2}=\frac{50\sqrt{37}}{3}\approx101,4m/s+sin\alpha=\frac{p_1}{p_2}=\frac{100\sqrt{3}}{50\sqrt{3}}\)
=> \(\alpha=34,72^o\)
Câu 2: Một người kéo một thùng nước có khối lượng 15kg từ giếng sâu h=8m lên, chuyển động nhanh dần đều trong 4s. lấy \(g=10m/s^2\) Tính công và công suất của người đó.
_______________________________________________
\(h=\frac{1}{2}at^2\)
\(8=\frac{1}{2}a.4^2\)
\(a=1m/s\)
\(F-P=ma\)
\(F=ma+P=15.1+15.10=165N\)
\(A=Fs=165.8=20,625J\)
\(P=\frac{A}{t}=\frac{20,625}{4}=5,15625W\)
Vậy ............
Câu 1
\(p=\sqrt{p_1^2+P_2^2}=\sqrt{\left(1.3\right)^2+\left(4.1\right)^2}=5\)
Câu 2
\(m=15\left(kg\right)\)
\(h=S=8m\)
\(t=4s\)
\(g=10\left(\frac{m}{s^2}\right)\)
a. Tính A = ?
Quãng đường mà thùng nước đi được :
\(S=\frac{1}{2}at^2\rightarrow a=\frac{2S}{t^2}=\frac{2.8}{4^2}=1\left(\frac{m}{s^2}\right)\)
Theo định luật II Niuton ta có : vectoP + vectoF = m.vecto a
\(\rightarrow F=P+ma\)
\(\rightarrow F=mg+ma\)
\(\rightarrow F=15.10+15,1=165\left(N\right)\)
- Công của lực kéo tính theo công thức : \(A=F.S\)
\(\rightarrow A=F.S\)
\(\rightarrow A=165.8=1320\left(J\right)\)
b . Tính: P = ?
- Công suất của người ấy tính theo công thức : \(P=\frac{A}{t}\)
\(\rightarrow P=\frac{1320}{4}=330\left(W\right)\)
p 1 = m 1 v 1 = 2.4 = 8 k g . m / s p 2 = m 2 v 2 = 3.2 = 6 k g . m / s
+ Vì v → 2 cùng hướng với v → 1 nên p → 1 ; p → 2 cùng phương, cùng chiều
⇒ p = p 1 + p 2 = 8 + 6 = 14 k g . m / s
Chọn đáp án A