K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Tgiac ABC co AB = AC => tgiac ABC can tai A  => goc ABC = goc ACB

a)  Xet tgiac ABD va tgiac ACD co:

AB = AC (gt)

goc ABD = goc ACD (cmt)

DB = DC (gt)

suy ra: tgiac ABD = tgiac ACD

b)  Tgiac ABC can tai A co AD la trung tuyen

=> AD dong thoi la phan giac

Xet tgiac ABI va tgiac ACI co:

AB = AC (gt)

goc BAI = goc CAI

AI: chung

suy ra: tgiac ABI = tgiac ACI   (c.g.c)

=> BI = CI

16 tháng 12 2018

Mik chưa có học cân

19 tháng 10 2019

KHÙNG

19 tháng 10 2019

ừ thì ko cần vẽ hình nữa

b) Vì H là trung điểm BC 

=> BH = HC 

Mà BH = BE (gt)

=> BH = HC = BE 

Vì ∆ABC cân tại A 

=> AB = AC 

Mà AB = CD (gt)

=> AB = AC = CD 

Ta có : 

EB + AB = AE 

HC + CD = HD 

=> AE = HD 

a) Ta có : 

ACB là góc ngoài tại C của ∆ACD 

Vì CA = CD 

=> ∆ACD cân tại C 

=> D = DAC = 2D 

=> ACB = D + CAD = 2D 

=> D = \(\frac{1}{2}ACB\:=\frac{1}{2}ABC\)(dpcm)

28 tháng 6 2020

A B C D E I H 1 2 1 2 1 1 2 1

a) Từ I kẻ IH vuông góc với BC

Xét t/giác BID và BIH 

có: \(\widehat{B_1}=\widehat{B_2}\)(gt)

 BI: chung

 \(\widehat{BDI}=\widehat{BHI}=90^0\)

=> t/giác BID = t/giác BID (ch.gn)

=> DI = IH (2 cạnh t/ứng) (1)

CMTT: t/giác ECI = t/giác HCI (ch - gn)

=> EI = IH (2)

Từ (1) và (2) => DI = IE

Nối A và I

TA có: AH // IE (vì cùng vuông góc với AC) => \(\widehat{DAI}=\widehat{AIE}\)(slt)

Xét t/giác DAI và t/giác EIA

có: IA : chung

\(\widehat{ADI}=\widehat{IEA}=90^0\)(gt)

 \(\widehat{DAI}=\widehat{AIE}\)(cmt)

=> t/goác DAI = t/giác EIA (ch - gn)

=> DI = EA; AD = EI (các cặp cạnh tương ứng)

mà DI = EI (cmt) 

=> AE = AD (đpcm)

b) Xét t/giác ABC vuông tại A, ta có:

BC2 = AB2  + AC2 (định lí Pi - ta - go)

=> BC2 = 62 + 82 = 100

=> BC = 10 (cm)

Ta có: t/giác BID = t/giác BIH (cmt) => BD = BH (2 cạnh t/ứng)

t/giác CIE = t/giác CIH (cmt) => CH = EC (2 cạnh t/ứng)

=> BD + EC = DH + HC = BC = 10 cm

Ta lại có: AB + AC =  BD + AD + AE + EC = (BD + EC) + 2AD = 6 + 8

=> 2AD + 10 = 14

=> 2AD = 4 => AD = AE = 2 cm

28 tháng 6 2020

A B C I D E K

a) Vì I là giao điểm của phân giác \(\widehat{B}\)và \(\widehat{C}\)

=> AI là phân giác \(\widehat{A}\)

=> ID=IE (1)

\(\Delta ADI\)và \(\Delta AEI\)vuông cân

=> ID=AD; IE=AE (2)

Từ (1)(2) => ED=AE (đpcm)

b) Hạ IK _|_ BC; ID _|_ AB; IE _|_ AC

=> BD=BK; CK=CE; AD=AE

\(\Delta ABC\)vuông tại A có AB=6cm; AC=8cm. Áp dụng định lý Pytago ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)

Đặt AD=x => BK=6-x; CK=8-c

=> 6-x+8-x=10

=> x=2

Vậy AD=2cm

20 tháng 4 2017

Ta có : ˆA1A1^ˆA2A2^ là hai góc kề bù nên:

ˆA1+ˆA2=1800⇒ˆA2=1800−ˆA1=1800−1500=300A1^+A2^=1800⇒A2^=1800−A1^=1800−1500=300

Vì d1 // d2ˆA2A2^ so le trong với ˆB1B1^

⇒ˆB1=ˆA2=300⇒B1^=A2^=300

Vậy ˆB1=300



18 tháng 9 2017

Gọi B giao điểm của a và d2.

d1 // d2 nên góc nhọn tại B bằng góc nhọn tại A và bằng

1800 - 1500= 300.

Bai 1:Cho tam giác ABC có AB<AC,AB=b,AC=c. Qua M là trung điểm của BC kẻ đường vuông góc với phân giác của góc A, cắt các đường AB, AC lần lượt tại D,E1, C/m BD=CE2, Tính AD&BD theo b,cBài 2:Cho \(\Delta ABC\)cân tại A,\(\widehat{BAC}\)=100\(^0\).D là điểm thuộc miền trong của tam giác ABC sao cho góc DBC=10 độ. Góc DCB=20độ.Tinh góc ADBBài...
Đọc tiếp

Bai 1:Cho tam giác ABC có AB<AC,AB=b,AC=c. Qua M là trung điểm của BC kẻ đường vuông góc với phân giác của góc A, cắt các đường AB, AC lần lượt tại D,E

1, C/m BD=CE

2, Tính AD&BD theo b,c

Bài 2:Cho \(\Delta ABC\)cân tại A,\(\widehat{BAC}\)=100\(^0\).D là điểm thuộc miền trong của tam giác ABC sao cho góc DBC=10 độ. Góc DCB=20độ.

Tinh góc ADB

Bài 3:Tính 

\(\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)

Bài 4:

Cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và a+b+c\(\ne0\); a=2005

Tính b,c

Bài 5:

Chứng minh rằng hệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)thì ta có hệ thức\(\frac{a}{b}=\frac{c}{d}\)

Bài 6:

Vẽ đồ thị hàm số

\(y=\hept{\begin{cases}2x;x\ge0\\x,x< 0\end{cases}}\)

Bài 7: Độ dài cạnh của tam giác ứng với tỉ lệ 2,3,4. Ba chiều cao tương ứng với 3 cạnh đó tỉ lệ với những số nào?

Cứu mình với thầy chủ nhiệm giao bài "dễ"quá mình cảm động tới rớt nước mắt òi. Vắt não từ hôm qua tới giờ mới làm được mấy bài dễ.T^T T^T T^T T^T

1
1 tháng 5 2018

4/

Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

=> a = b = c = 2005

A B C D E K

Bài làm

Gọi đường thẳng đi qua điểm D cắt BE tại I

Ta có: \(\widehat{KDA}=\widehat{BDI}\)

Xét tam giác BDI có:

\(\widehat{BDI}+\widehat{DBI}=90^0\)    ( 1 )

Xét tam giác BAE có:

\(\widehat{ABE}+\widehat{BEA}=90^0\)    ( 2 ) 

Từ ( 1 ) ( 2 ) => \(\widehat{BDI}=\widehat{BEA}\)

Mà \(\widehat{KDA}=\widehat{BDI}\)( cmt  )

=> \(\widehat{KDA}=\widehat{BEA}\)

Xét tam giác KDA và tam giác BEA có:

\(\widehat{DAK}=\widehat{BAE}\)

AD = AE ( giả thiết )

\(\widehat{KDA}=\widehat{BEA}\)

=> Tam giác KDA = tam giác BEA  ( g.c.g )

=> AK = AB ( hai cạnh tương ứng )

Mà AB = AC ( giả thiết )

=> AK = AC ( đpcm )

# Học tốt #

16 tháng 8 2020

a) Gọi số đo góc C là x (độ) (0<x<70). => Số đo góc B là x + 40 (độ).

Tổng 3 góc trong 1 tam giác là 180 độ. => Số đo góc A là 180 - (x + 40) - x = 140 - 2x (độ).

AM phân giác góc BAC. => Số đo góc BAM = Số đo góc CAM = (140 - 2x) : 2 = 70 - x (độ).

Tổng 3 góc trong tam giác AMC là 180 độ. => Số đo góc AMC = 180 - Số đo góc CAM - Số đo góc C = 180 - (70 - x) - x = 110 (độ).

Đáp số: Số đo góc AMC = 110 độ.

b) D là trung điểm BC, ED vuông góc với BC. => Tam giác EBC cân tại E. => Số đo góc EBC = Số đo góc ECB = x (độ).

Mà số đo góc ABC là (x + 40) (độ). => Số đo góc ABE = Số đo góc ABC - Số đo góc EBC = (x + 40) - x = 40 (độ).

Đáp số: Số đo góc ABE = 40 độ.

A B C M D E