K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

4 tháng 2 2016

Hỏi đáp Toán

24 tháng 1 2016

a)  (n + 2) chia hết cho (n - 1).     \(\left(n\in N\right)\)


\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1

\(\Rightarrow\) 4 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}

\(\Rightarrow\) n \(\in\) {2; 3; 5}



b) (2n + 7) chia hết cho (n + 1).      \(\left(n\in N\right)\)

\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1

\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1

\(\Rightarrow\) 5 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}

\(\Rightarrow\) n \(\in\) {0; 4}



c) (2n + 1) chia hết cho (6 - n).      \(\left(n\in N\right)\)

\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n

\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n

\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n

\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) -11 chia hết cho 6 - n

\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn



d) 3n chia hết cho (5 - 2n)      \(\left(n\in N\right)\)

\(\Rightarrow\) 3n chia hết cho 5 - n - n

\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n

\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n

KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5

\(\Rightarrow\) n \(\in\) {0; 1; 2}

 

e) (4n + 3) chia hết cho (2n + 6)      \(\left(n\in N\right)\)

\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn

24 tháng 1 2016

a)  (n + 2) chia hết cho (n - 1).     \(\left(n\in N\right)\)


\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1

\(\Rightarrow\) 4 chia hết cho n - 1

\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}

\(\Rightarrow\) n \(\in\) {2; 3; 5}



b) (2n + 7) chia hết cho (n + 1).      \(\left(n\in N\right)\)

\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1

\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1

\(\Rightarrow\) 5 chia hết cho n + 1

\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}

\(\Rightarrow\) n \(\in\) {0; 4}



c) (2n + 1) chia hết cho (6 - n).      \(\left(n\in N\right)\)

\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n

\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n

\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n

\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n

\(\Rightarrow\) -11 chia hết cho 6 - n

\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn



d) 3n chia hết cho (5 - 2n)      \(\left(n\in N\right)\)

\(\Rightarrow\) 3n chia hết cho 5 - n - n

\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n

\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n

KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5

\(\Rightarrow\) n \(\in\) {0; 1; 2}

 

e) (4n + 3) chia hết cho (2n + 6)      \(\left(n\in N\right)\)

\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6

\(\Rightarrow\) - 9 chia hết cho 2n + 6

\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}

\(\Rightarrow\) Không có số tự nhiên n thỏa mãn

19 tháng 7 2019

a) a) aOc=dOb=57(đối đỉnh)

aOd=180-aOc=180-57=123(kề bù)

aOd=cOb=123( đối đỉnh)

19 tháng 7 2019

b) 2.aOc=3.aOd=>aOc/3=aOd/2

mà aOc+aOd=180 độ

Áp dụng t/c DTSBN có:

aOc/3=aOd/2=>aOc+aOd/ 3+2=180/5=36

=> aOc=36.3=108

aOd=36.2=72

1Hai số tự nhiên A và B, biết A < B và hai số có chung những đặc điểm sau:- Là số có 2 chữ số.- Hai chữ số trong mỗi số giống nhau.- Không chia hết cho 2; 3 và 5.a) Tìm 2 số đó.b) Tổng của 2 số đó chia hết cho số tự nhiên nào?2Hai bạn Xuân và Hạ cùng một lúc rời nhà của mình đi đến nhà bạn. Họ gặp nhau tại một điểm cách nhà Xuân 50 m. Biết rằng Xuân đi từ nhà mình đến nhà Hạ mất...
Đọc tiếp

1

Hai số tự nhiên A và B, biết A < B và hai số có chung những đặc điểm sau:
- Là số có 2 chữ số.
- Hai chữ số trong mỗi số giống nhau.
- Không chia hết cho 2; 3 và 5.
a) Tìm 2 số đó.
b) Tổng của 2 số đó chia hết cho số tự nhiên nào?

2

Hai bạn Xuân và Hạ cùng một lúc rời nhà của mình đi đến nhà bạn. Họ gặp nhau tại một điểm cách nhà Xuân 50 m. Biết rằng Xuân đi từ nhà mình đến nhà Hạ mất 12 phút còn Hạ đi đến nhà Xuân chỉ mất 10 phút. Hãy tính quãng đường giữa nhà hai bạn.

3

 A là số tự nhiên có 2004 chữ số. A là số chia hết cho 9 ; B là tổng các chữ số của A ; C là tổng các chữ số của B ; D là tổng các chữ số của C. Tìm D.

4

 Bao nhiêu giờ ?
Khi đi gặp nước ngước dòng
Khó khăn đến bến mất tong tám giờ
Khi về từ lúc xuống đò
Đến khi cập bến bốn giờ nhẹ veo
Hỏi rằng riêng một khóm bèo
Bao nhiêu giờ để trôi theo ta về ?

5

Một hình chữ nhật có chiều dài gấp 4 lần chiều rộng. Nếu tăng chiều rộng thêm 45 m thì được hình chữ nhật mới có chiều dài vẫn gấp 4 lần chiều rộng. Tính diện tích hình chữ nhật ban đầu.

4
27 tháng 1 2016

2.

Gọi quãng đường cần tìm là s.---> vận tốc Xuân= s/12,

--> vận tốc Hạ=s/10  
thời gian Xuân gặp Hạ: 50/(s/12)= (s-50)/(s/10) 
50x12/s= (s-50)x10/s 
50x12=10s-500 
---> s = (500+50x12)/10= 110

quãng đường giữa nhà hai bạn là 110m

27 tháng 1 2016

4.

Khi ngược dòng 1 giờ ta đi được số phần quãng sông là:

1 : 8 = 1/8 (quãng sông)

Khi xuôi dòng 1 giờ ta đi được số phần quãng sông là:

1 : 4 = 1/4 (quãng sông)

Bèo trôi theo ta về 1 giờ trôi được số phần quãng sông là:

(1/4 - 1/8) : 2 = 1/16 (quãng sông)

Bèo trôi theo ta về cập bến sau số giờ là:

1 : 1/16 = 16 (giờ)

Đ/s:  16 giờ

21 tháng 1 2016

* Sửa:

a) 35 - (-x + 8) = 23 - (-7)

35 + x - 8 = 30

35 + x = 30 + 8

35 + x = 38

x = 38 - 35

x = 3

Vậy, x = 3

 

b) 4 - 2(x - 3) = 3 (3 - x)

4 - (2x - 2 . 3) = 3 . 3 - 3x

4 - (2x - 6) = 9 - (2x + x)

4 - 2x + 6 = 9 - 2x - x

(4 + 6) = 9 - x

10 = 9 - x

9 - 10 = x

-1 = x

x = -1

Vậy, x = -1

21 tháng 1 2016

a/ 35 - ( - x + 8 ) = 23 - ( - 7 )

35 + x +8 = 23 + 7

.......

18 tháng 2 2016

Phần a bạn liệt kê hết ra nhé

Có Ư(-21)={-21;-7;-3;-1;1;3;7;21}

18 tháng 2 2016

a) Vì x.y= -21 suy ra x;y thuộc Ư(21)={ -1,-3,-7,-21,1,3,7,21 }

 ( rồi em tự suy ra các cặp x,y nhé )

 

7 tháng 2 2017

a d e m n b c i h

a, tam giác ade cân a

=> góc d = góc e và ad = ae

tam giác adb = tam giác aec ( cgc)

=> ab=ac

=> tam giác abc cân a

b, tam giác bmd vuông m và tam giác cne vuông n

góc m = góc n =90 độ

góc d = góc e

bd = ce

=> bmd = cne (ch-gn)

=> bm = cn

c, có tam giác bmd = tam giác cne

=> góc mbd = góc nce

mà góc cbi đối đỉnh góc mbd, bci đối đỉnh nce

=> góc cbi = góc bci

=> tam giác ibc cân i

d, lây h là trung điểm bc

tam giác abc cân a có ah là đường trung tuyến úng với bc

=> ah vừa là trung tuyến vừa là đường cao ứng với bc

cmtt với ibc => ih vừa là trung tuyến vừa là đường cao ứng với bc

=> a,i,h thẳng hàng

=> ai vừa trung tuyến vừa là đường cao tam giác abc cân a

=> đpcm

30 tháng 12 2018

Bn ghi rõ ràng các góc, tam giác là chữ in hoa bn nhé ok

6 tháng 10 2015

ta  tính \(y'=6x^2+a-12\)

để hàm số vừa có cực đại và cực tiểu thì \(y'=0\) hai nghiệm phân biệt suy ra \(6x^2+a-12=0\Leftrightarrow6x^2=12-a\) (*)

để (*) có 2 nghiệm phân biệt thì \(12-a>0\Leftrightarrow a<12\)

vậy với a<12 thì hàm số có cực đại và cực tiểu

gọi \(x_1;x_2\) là cực đại và cực tiểu của hàm số

suy ra \(x_{1,2}=\pm\sqrt{\frac{12-a}{6}}\) ta thay vào hàm số suy ra đc \(y_{1,2}\) suy ra \(I\left(x_1;y_1\right);A\left(x_2;y_2\right)\)

sử dụng công thức tính khoảng cách

pt đường thẳng y có dạng x=0

ta có \(d\left(I;y\right)=\frac{\left|x_1\right|}{\sqrt{1}}\)\(d\left(A;y\right)=\frac{\left|x_2\right|}{\sqrt{1}}\)

\(d\left(I,y\right)=d\left(A,y\right)\) giải pt ta tìm ra đc a

20 tháng 11 2019

Chọn B.

Phương pháp: 

Áp dụng công thức tính thể tích lăng trụ: V = B.h trong đó: V là thể tích lăng  trụ, B là diện tích đáy của lăng trụ, h là chiều cao của lăng trụ.

Cách giải: 

Diện tích tam giác đều ABC có cạnh 2a là: