K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

22 tháng 3 2016

A' B' C' A B C M N c a a b a căn 2 a căn 3

23 tháng 3 2016

Đặt \(\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b},\overrightarrow{AA'}=\overrightarrow{c}\)

với \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0\)

và \(\left|\overrightarrow{a}\right|=a,\overrightarrow{\left|b\right|}=a\sqrt{2},\left|\overrightarrow{c}\right|=a\sqrt{3}\)

khi đó 

\(\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{c,}\overrightarrow{BC}=-\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\)

Giả sử đường vuông góc chung cắt \(\overrightarrow{AB}\) tại M và cắt \(\overrightarrow{BC'}\) tại N và \(\overrightarrow{AM}=x.\overrightarrow{AB'}=x.\overrightarrow{a}+x.\overrightarrow{c},\overrightarrow{BN}=y.\overrightarrow{BC'}=-y.\overrightarrow{a}+y.\overrightarrow{b}+y.\overrightarrow{c}\)

Suy ra \(\overrightarrow{AN}=\left(1-y\right)\overrightarrow{a}+y.\overrightarrow{b}+y.\overrightarrow{c}\)

Và do đó

\(\overrightarrow{MN}=\left(1-x-y\right)\overrightarrow{a}+y.\overrightarrow{b}+\left(y-x\right)\overrightarrow{c}\)

Ta có :

\(MN\perp AB',BC'\Leftrightarrow\begin{cases}\overrightarrow{MN}.\overrightarrow{AB}=0\\\overrightarrow{MN}.\overrightarrow{BC'}=0\end{cases}\)

                            \(\Leftrightarrow\begin{cases}-4x+2y+1=0\\-2x+6y-1=0\end{cases}\)

Giải hệ ta thu được \(x=\frac{2}{5},y=\frac{3}{10}\)

Từ đó :

\(MN^2=\left[\left(1-x-y\right)^2+2y^2+3\left(y-x\right)^2\right].a^2=\frac{39^a}{100}\)

Suy ra \(d\left(AB';BC'\right)=\frac{a\sqrt{39}}{10}\)

26 tháng 5 2017

Hỏi đáp Toán

15 tháng 2 2018

Đáp án A

Gọi E là trung điểm của BB' => ME//B'C => (AME)//B'C

= d(C;(AME))

Vì 

Gọi h là khoảng cách từ B đến mặt phẳng (AME).

Do tứ diện BAME có BA, BM, BE đôi một vuông góc nên :

7 tháng 5 2019

Đáp án D

25 tháng 4 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi N là trung điểm của BB’, ta có: CB’ // MN nên CB’ // (AMN). Như vậy

d(BC’, AM) = d(B’, (AMN)) = d(B, (AMN))

(vì B, B’ đối xứng qua N ∈ (AMN)).

Hạ BH ⊥ (AMN), ta có d(B, (AMN)) = BH.

Nhận xét:

Tứ diện B.AMN có ba cạnh BA, BM, BN vuông góc nhau từng đôi một nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

7 tháng 8 2018