K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

Từ phương trình (1) ta có x = 2y + 5. Thay x = 2y + 5 vào phương trình (2) ta được: m(2y + 5) – y = 4 ⇔ (2m – 1).y = 4 – 5m        (3)

Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất. Điều này tương đương với 2m – 1 0≠  1 2

Từ đó ta được: y = 4 − 5 m 2 m − 1 và x = 5 + 2 y = 3 2 m − 1  . Ta có:

x . y = 3 4 − 5 m 2 m − 1 2  . Do đó x. y < 0  4 – 5m < 0 ⇔ m > 4 5 (thỏa mãn điều kiện)

Đáp án:A

10 tháng 1 2016

a)Với m=2 thì hpt trở thành:

x-2y=5

2x-y=7

<=>

2x-4y=10

2x-y=7

<=>

-3y=3

2x-y=7

<=>

y=-1

x=3

b)\(\int^{\left(m-1\right)x-my=3m-1}_{2x-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{\frac{6m+2my-2}{m-1}-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{m^2+2m+my+y+3=0}\)

*m2+2m+my+y+3=0

<=>y.(m+1)=-m2-2m-3

*Với m=-1 =>PT vô nghiệm

*Với m khác -1 =>PT có nghiệm là: \(y=\frac{-m^2-2m-3}{m+1}=-m-1-\frac{2}{m+1}\)

 

bí tiếp

6 tháng 9 2020

Hệ có nghiệm duy nhất khi và chỉ khi \(\frac{m-1}{2}\ne\frac{-m}{-1}\Leftrightarrow m\ne-1\)

Xét m=0 thì x=1, y=-3 --> thỏa mãn 

Xét m khác 0 thì nhân 2 vế của đẳng thức thứ 2 cho m ---> \(\hept{\begin{cases}\left(m-1\right)x-my=3m-1\\2mx-my=m^2+5m\end{cases}}\)

Lấy đẳng thức 2 trừ đẳng thức 1 vế theo vế--> Dễ dàng tính được x=m+1, y=m-3 ---> thế vào điều kiện:

\(x^2-y^2< 4\Leftrightarrow\left(m+1\right)^2-\left(m-3\right)^2< 4\Leftrightarrow8m-8< 4\Leftrightarrow m< \frac{3}{2}\)

Đối chiếu điều kiện có nghiệm duy nhất---> Kết luận \(m< \frac{3}{2},m\ne-1\)

20 tháng 3 2021

Bài 1 : x² + x² -12 = 0

a = 1 , b = 1 , c = -12

∆ = 1 -4 × 1 × (-12) 

∆ = 49 > 0 .✓49 =7

Vậy pt có 2 ng⁰ pb ( tự viết nhé ) !

11 tháng 3 2020

Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\frac{m}{1}\ne\frac{1}{2}\Rightarrow2m\ne1\Rightarrow m\ne\frac{1}{2}\)

* Giải hệ theo m :

\(\hept{\begin{cases}mx+y=4\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}2mx+2y=8\\x+2y=5\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2mx+x=3\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x\left(2m+1\right)=3\\x+2y=5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\x+2y=5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\\frac{3}{2m+1}+2y=5\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=5-\frac{3}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\2y=\frac{10m-2}{2m+1}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2m+1}\\y=\frac{5m-1}{2m+1}\end{cases}}\)

Vì \(x>0\Rightarrow\frac{3}{2m+1}>0\Rightarrow2m+1>0\Leftrightarrow m>-\frac{1}{2}\left(1\right)\)

Vì \(y>0\Rightarrow\frac{5m-1}{2m+1}>0\)mà \(2m+1>0\Rightarrow5m-1>0\Rightarrow m>\frac{1}{5}\left(2\right)\)

Để \(y>x\Rightarrow\frac{5m-1}{2m+1}>\frac{3}{2m+1}\)\(\Rightarrow\frac{5m-1}{2m+1}-\frac{3}{2m+1}>0\)

\(\Rightarrow\frac{5m-1-3}{2m+1}>0\Rightarrow\frac{5m-4}{2m+1}>0\)

Mà \(2m+1>0\Rightarrow5m-4>0\Rightarrow m>\frac{4}{5}\)

Từ ( 1 ) , ( 2 ) và ( 3 ) \(\Rightarrow\)Để hệ phương trình có nghiệm duy nhất thỏa mãn y > x > 0 thì \(m>\frac{4}{5}\)

Giải xong muốn gãy tay :v

11 tháng 1 2017

Theo định thức Grane : 

\(D=1-2m\)\(D_x=5-8=-3\)\(D_y=4-5m\)

Vì Dx khác 0 nên hệ luôn có hai nghiệm phân biệt : 

\(\hept{\begin{cases}x=\frac{D_x}{D}=-\frac{3}{1-2m}\\y=\frac{D_y}{D}=\frac{4-5m}{1-2m}\end{cases}}\)

Để x,y trái dấu thì xy < 0 \(\Leftrightarrow-\frac{3\left(4-5m\right)}{\left(1-2m\right)^2}< 0\Leftrightarrow\hept{\begin{cases}m\ne\frac{1}{2}\\4-5m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne\frac{1}{2}\\m< \frac{4}{5}\end{cases}}\)

8 tháng 7 2016

\(hpt\Leftrightarrow\hept{\begin{cases}m\left(m+1\right)x+2my=4m-2m^2\\\left(2-m\right)x+my=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m^2+2m-2\right)x=-2m^2+4m-1\\\left(2-m\right)x+my=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2m^2+4m-1}{m^2+2m-2}\\y=\frac{1-\left(2-m\right)x}{m}\end{cases}}\)