K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

Tập xác định : D = [0 ; 2]; y' = , ∀x ∈ (0 ; 2); y' = 0 ⇔ x = 1.

Bảng biến thiên :

        

Vậy hàm số đồng biến trên khoảng (0 ; 1) và nghịch biến trên khoảng (1 ; 2).

 

1 tháng 4 2016

Tập xác định : D = R. y' =  => y' = 0 ⇔ x=-1 hoặc x=1.

         Bảng biến thiên :

         

Vậy hàm số đồng biến trên khoảng (-1 ; 1); nghịch biến trên các khoảng (-∞ ; -1), (1 ; +∞).

11 tháng 8 2015

a) TXĐ: D = [0; + \(\infty\))

\(y'=1+\frac{1}{2\sqrt{x}}\) > 0 với mọi x thuộc D

BBT:  x y' y 0 +oo + 0 +oo

Từ BBT => Hàm số đồng biến trên D ;

y đạt cực tiểu bằng 0 tại x = 0

Hàm số không có cực đại

b) TXĐ : D = = [0; \(\infty\))

\(y'=1-\frac{1}{2\sqrt{x}}\)

\(y'=0\) <=> \(2\sqrt{x}=1\) <=> \(x=\frac{1}{4}\)

x y' y 0 +oo + 0 +oo -1/4 1/4 0 -

Từ BBT: Hàm số đồng biến trên (1/4; + \(\infty\)); nghịch biến trên (0;1/4)

Hàm số đạt cực tiểu = -1/4 tại  x = 1/4

Hàm số không có cực đại

26 tháng 1 2016

+TXĐ: X\(\in\)R

+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)

+y''=6(x-1)=> y' = 0 khi x = 1;y=2

+

x       -\(\infty\)                   0                      1                        2                        +\(\infty\)
y'                 +            0           -                           -        0       +
y

 

26 tháng 1 2016

2.  y' = 3x2 - 6x + m <0 khi x thuộc ( -1; 3)  => m/3 =-3 =>  m =-9

28 tháng 9 2015

đúng nhé. em dựa theo lý thuyết bên trên ấy nhé

28 tháng 9 2015

\(y'=3x^2-6x+m\)

để hàm số đồng biến trên R thì y'>0 với mọi x thuộc R

suy ra \(\begin{cases}3>0\\\Delta=9-3m<0\end{cases}\) suy ra m>3 

vậy m>3 là điều cần tìm

25 tháng 11 2019

Chọn đáp án D

Phương pháp

Sử dụng cách đọc bảng biến thiên để suy ra khoảng đồng biến của hàm số.

Hàm số liên tục trên (a;b) có y’>0 với x thuộc (a;b) thì hàm số đồng biến trên (a;b).

Cách giải

Từ BBT ta có hàm số đồng biến trên các khoảng (-∞;-1) và (0;1).

28 tháng 9 2015

ta có \(y'=\frac{m^2-9}{\left(x+m\right)^2}\) để hàm số đồng biến trên \(\left(2;+\infty\right)\) với m khác 3 thì y'>0 với mọi \(x\in\left(2;+\infty\right)\)

\(\Rightarrow m^2-9>0\) \(\Rightarrow m\in\left(-\infty;3\right)\cup\left(3;+\infty\right)\)

vậy ta đc đk của m

16 tháng 4 2017

mấy bn giúp mk với,pleaseeeeeeeeeeeeee

28 tháng 9 2015

ta có \(y'=\frac{mx^2+4mx+14}{\left(x+2\right)^2}\) để hàm số nghịch biến trên \(\left(1;+\infty\right)\) thì y'<0 với mọi x thuộc khoảng đó  suy ra 

\(\begin{cases}m<0\\\Delta=4m^2-14m<0\end{cases}\)

giải ra ta đc đkcủa m