K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Thay x = 1 vào f(x) ta được

f ( 1 ) = 1 + 1 3 + 1 5 + 1 7 + … + 1 101 = 1 + 1 + 1 + … + 1 ⏟ 51501 = 51.1 = 51

Thay x = -1 vào f(x) ta được

f ( − 1 ) = 1 + ( − 1 ) 3 + ( − 1 ) 5 + ( − 1 ) 7 + … + ( − 1 ) 101 = 1 + ( − 1 ) + ( − 1 ) + … + ( − 1 ) ⏟ 50 : 0 ( − 1 ) = 1 + 50. ( − 1 ) = 1 − 50 = − 49  Vây  f ( 1 ) = 51 ; f ( − 1 ) = − 49

Chọn đáp án B

16 tháng 3 2017

* f (1) = 1 + 13 + 15 + 17 + ....... + 1101

(có 51 số hạng 1)

=> f (1) = 51

* f (-1) = 1 + (-1)3 + (-1)5 + (-1)7 + ..... + (-1)101

(có 50 số hạng -1)

=> f (-1) = 1 + (-50)

=> f (-1) = -49

26 tháng 5 2021

f(1) = 1 + 13 + 15 + ... + 1101 (51 số hạng 1)

= 1.51 = 51

f(-1) = 1 + (-1)3 + (-1)5 + .... + (-1)101

= 1 - 1 - 1 - ....  - 1 (50 số hạng - 1)

= 1 + (-1).50

= - 49 

26 tháng 5 2021

nehhderufw

29 tháng 3 2017

Tính \(f\left(1\right)\)

\(f\left(x\right)=1+x^3+x^5+x^7+...+x^{101}\)

\(\Rightarrow f\left(1\right)=1+1^3+1^5+1^7+...+1^{101}\)

\(=1+1+1+1+...+1\) (có \(51\) số \(1\))

\(=51\)

Tính \(f\left(-1\right)\)

\(f\left(x\right)=1+x^3+x^5+x^7+...+x^{101}\)

\(\Rightarrow f\left(-1\right)=1+\left(-1\right)^3+\left(-1\right)^5+...+\left(-1\right)^{101}\)

\(=1+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\) (có \(50\) số \(-1\))

\(=1+\left(-50\right)\)

\(=-49\)

Vậy: \(\left\{{}\begin{matrix}f\left(1\right)=51\\f\left(-1\right)=-49\end{matrix}\right.\)

29 tháng 3 2017

Ta có:

a) \(f\left(1\right)=1+1^3+1^5+1^7+...+1^{101}\)

\(f\left(1\right)=1+50=51\)

b) \(f\left(-1\right)=1+\left(-1\right)^3+\left(-1\right)^5+\left(-1\right)^7+...+\left(-1\right)^{101}\)

\(f\left(-1\right)=1-50=-49\)

31 tháng 12 2015

f(1) = 51

f(-1) = -49

31 tháng 12 2015

với f ( 1 ) = 1 + 13 + .... + 1101 
             = 1 + 1 + ...... + 1 
             = 1 . 25 + 51 
             = 76 
Bài kia tương tự nhé

1 tháng 5 2016

ta có:f(x)=1+x3+x5+...+x101

=>f(1)=1+13+15+...+1101

=1+1+...+1(f(x) có 51 số hạng )

=1*51

=1

f(-1) làm tương tự và có kết quả là=-49

1 tháng 5 2016

Ta có: f(x)=1+x3+x5+...+x101

      => f(1)= 1+13+15+...+1101

 = 1+  1 + 1 +...+1 (f(x) có 51 số hạng)

  = 51   f( 1) = 1 + 13 + 15 + ... + 1101 = 1 + 1+ 1+ ... + 1 ( có 51 số hạng 1) = 51

          f( -1) = - 49

7 tháng 4 2018

Ta có:\(f\left(x\right)=x^8-100x^7-x^7+100x^6-....+x^2-100x-x+100-75\)

\(=x^7\left(x-100\right)-x^6\left(x-100\right)-....+x\left(x-100\right)-\left(x-100\right)-75\)

Nên \(f\left(100\right)=x^7.\left(100-100\right)-x^6\left(100-100\right)-....+x\left(100-100\right)-\left(100-100\right)-75\)

\(=-75\)

7 tháng 4 2018

Với x= 100 thì 101=x+1 nên ta có f(100)=x\(^8\)-(x+1)x\(^7\)=(x+1)x\(^6\)-(x+1)x\(^5\)+....-(x+1)+25=x\(^8\)-x\(^8\)+x\(^7\)-......-x-1+25=24