Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (d')//(d) nên (d'): 4x-10y+c=0
Thay x=2 và y=3 vào (d'), ta được:
c+12-30=0
hay c=18
Vậy: (d'): 4x-10y+18=0
VTPT là (4;-10)=(2;-5)
=>VTCP là (5;2)
Phương trình tham số là \(\left\{{}\begin{matrix}x=2+5t\\y=3+2t\end{matrix}\right.\)
a/ \(\left(d\right):3\left(x-1\right)+4\left(y+2\right)=0\)
\(\left(d\right):3x+4y+5=0\)
b/ \(\left(d\right)//\left(d'\right)\Rightarrow\overrightarrow{n}=\left(4;1\right)\)
\(\Rightarrow\left(d\right):4\left(x+3\right)+y-2=0\)
\(\left(d\right):4x+y+10=0\)
c/ \(\left(d\right)\perp Ox\Rightarrow\overrightarrow{n}=\left(1;0\right)\)
\(\Rightarrow x=0\)
Mà cái này là trục Oy luôn rồi còn đâu :<
a. Tọa độ A thỏa mãn:
\(4-3t+2\left(-1+2t\right)-1=0\Rightarrow t=-1\)
\(\Rightarrow A\left(7;-3\right)\)
b. d1 nhận \(\left(-3;2\right)=-1\left(3;-2\right)\) là 1 vtcp nên đường thẳng d nhận \(\left(2;3\right)\) là 1 vtcp và \(\left(3;-2\right)\) là 1 vtpt
Phương trình tham số d: \(\left\{{}\begin{matrix}x=7+2t\\y=-3+3t\end{matrix}\right.\)
Pt tổng quát:
\(3\left(x-7\right)-2\left(y+3\right)=0\Leftrightarrow3x-2y-27=0\)
Đường thẳng d2 nhận \(\left(1;2\right)\) là 1 vtpt nên d3 nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp
Phương trình tham số d3: \(\left\{{}\begin{matrix}x=7+2t\\y=-3-t\end{matrix}\right.\)
Pt tổng quát:
\(1\left(x-7\right)+2\left(y+3\right)=0\Leftrightarrow x+2y-1=0\)