K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi h/s cần tìm có dạng: y = ax + b (a khác 0)

PT hoành độ giao điểm của d1 và d2 là: 2x - 1 = x <=> x = 1

Thay x = 1 vào hs y = x ta dc y = 1

Vậy giao điểm của d1 và d2 có tọa độ là (1;1)

Vì hs cần tìm // vs d3 nên a = -3 và b khác 2

và hs cần tìm đi qua giao điểm của d1 và d2 nên thay x = 1; y = 1 vào hs y = ax + b ta dc: a + b = 1

hay -3 + b = 1 => b = 4

Vậy h/s cần tìm là: y = -3x + 4

10 tháng 3 2020

PTHĐGĐ của (d1) và (d2):

x = 2x - 1

<=> x = 1

thay x = 1 vào (d2) ta được y = 1

=> điểm (1; 1) là giao điểm của (d1) và (d2)

gọi (d) : ax + b

do (d) // (d3) và đi qua giao điểm của (d1) và (d2)

=> (d) // (d3) nên a = a' hay a = -3

và b # b' hay b # 2 

lại có a + b = 1 => b = 4 (thỏa)

vậy (d): -3x + 4

18 tháng 2 2020

Sửa đề (d) y=2(m-1)x+m^2+2m

a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)

Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)

=>\(3=2\left(m-1\right).1+m^2+2m\)

<=>\(m^2+2m+2m-2-3=0\)

<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)

b, Phương trình hoành độ giao điểm của (P) và (d) :

\(x^2=2\left(m-1\right)x+m^2+2m\) 

<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)

Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B

c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)

\(x_1^2+x_2^2+6x_1x_2>2017\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)

<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)

<=>\(4m^2-8m+4-4m^2-8m-2017>0\)

<=>\(-16m-2013>0\)

<=>\(m< \frac{-2013}{16}\)

2 tháng 11 2018

a) Đồ thị hàm số y = 0,5x + 2 là đường thẳng đi qua các điểm (0; 2) và (-4; 0)

Đồ thị hàm số y = 5 – 2x là đường thẳng đi qua các điểm (0; 5) và (2,5; 0)

b) Ta có A(-4; 0), B(2,5; 0)

Tìm tọa độ điểm C, ta có: phương trình hoành độ giao điểm của đường thẳng y = 0,5x + 2 và y = 5 – 2x là

0,5x + 2 = 5 – 2x ⇔ 2,5x = 3

                               ⇔ x = 1,2

Do đó y = 0,5 . 1,2 + 2 = 2,6. Vậy C (1,2; 2,6)

c) Gọi D là hình chiếu của C trên Ox ta có:

CD = 2,6; AB = AO + OB = 4 + 2,5 = 6,5 (cm)

∆ACD vuông tại D nên AC2 = CD2 + DA2

⇒AC=√2,62+5,22=√33,8≈5,81(cm)⇒AC=2,62+5,22=33,8≈5,81(cm)

 Tương tự : BC=√BD2+CD2BC=BD2+CD2

                       =√1,32+2,62=√8,45≈2,91(cm)=1,32+2,62=8,45≈2,91(cm)

d) Ta có ∆ACD vuông tại D nên tgˆCAD=CDAD=2,65,2=12tgCAD^=CDAD=2,65,2=12

 ⇒ˆCAD≈26034′⇒CAD^≈26034′. Góc tạo bởi đường thẳng y=12x+2y=12x+2 và trục Ox là 26034’

Ta có ∆CBD vuông tại D nên tgˆCBD=CDBD=2,61,3=2⇒ˆCBD≈63026′tgCBD^=CDBD=2,61,3=2⇒CBD^≈63026′ 

Góc tạo bởi đường thẳng y = 5 – 2x và trục Ox là 1800 – 63026’ ≈ 116034’

a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)

    Cho x = 0 => y = 2 được D(0; 2)

    Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)

Nối A, D ta được đồ thị của (1).

- Vẽ đồ thị hàm số y = 5 – 2x (2)

    Cho x = 0 => y = 5 được E(0; 5)

    Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)

Nối B, E ta được đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Hoành độ giao điểm C của hai đồ thị là nghiệm phương trình:

    0,5x + 2 = 5 – 2x => x = 1,2

=> y = 0,5.1,2 + 2 = 2,6

=> Tọa độ C(1,2 ; 2,6)

c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)

Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.

Ta có: tgα = 0,5 => α = 26o34'

Gọi β là góc hợp bởi đường thẳng y = 5 – 2x với tia Ox (β là góc tù).

Gọi β' là góc kề bù với β, ta có:

tgβ' = -(-2) = 2 => β' = 63o26'

=> β = 180o – 63o26' = 116o34'