Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, b=k=0
b,(2k-1).3+k=0 => 3k=3 => k =1
c, 2k-1 = 3/5=> 2k = 8/5 => k = 4/5 khác 4 vậy k = 4/5
d, (2k-1)(-3) +k =2 => -5k =-1 => k =1/5
Lời giải:
1. Để đths đi qua $A(-2;-2)$ thì:
$y_A=(m-2)x_A^2$
$\Leftrightarrow -2=(m-2)(-2)^2$
$\Leftrightarrow m-2=\frac{-1}{2}$
$\Leftrightarrow m=\frac{3}{2}$
2.
PT hoành độ giao điểm của đths câu 1 với $y=-1$ là:
$(\frac{3}{2}-2)x^2=-1$
$\Leftrightarrow \frac{-1}{2}x^2=-1$
$\Leftrightarrow x^2=2$
$\Leftrightarrow x=\pm \sqrt{2}$
Vậy 2 tọa độ giao điểm là $M(\sqrt{2}; -1); (-\sqrt{2}; -1)$
Gọi h/s cần tìm có dạng: y = ax + b (a khác 0)
PT hoành độ giao điểm của d1 và d2 là: 2x - 1 = x <=> x = 1
Thay x = 1 vào hs y = x ta dc y = 1
Vậy giao điểm của d1 và d2 có tọa độ là (1;1)
Vì hs cần tìm // vs d3 nên a = -3 và b khác 2
và hs cần tìm đi qua giao điểm của d1 và d2 nên thay x = 1; y = 1 vào hs y = ax + b ta dc: a + b = 1
hay -3 + b = 1 => b = 4
Vậy h/s cần tìm là: y = -3x + 4
PTHĐGĐ của (d1) và (d2):
x = 2x - 1
<=> x = 1
thay x = 1 vào (d2) ta được y = 1
=> điểm (1; 1) là giao điểm của (d1) và (d2)
gọi (d) : ax + b
do (d) // (d3) và đi qua giao điểm của (d1) và (d2)
=> (d) // (d3) nên a = a' hay a = -3
và b # b' hay b # 2
lại có a + b = 1 => b = 4 (thỏa)
vậy (d): -3x + 4