K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

-Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm. 

8 tháng 3 2016

-Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm. 

26 tháng 11 2016

P = 7 + 72 + 73 + ... + 72016

=> P = 7( 1 + 7 + 72 + 73) + ... + 72013( 1 + 7 + 72 + 73)

=> P = 7( 1 + 7 + 49 + 343) + ... + 72013( 1 + 7 + 49 + 343)

=> P = 7 . 400 + ... + 72013 . 400

=> P = (7 + ... + 72013) . 400

=> P = (7 + ... + 72013) . 202 (đpcm)

29 tháng 12 2015

chịu

22 tháng 2 2016

\(\frac{n+3}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)

Để n+3/n-2 là số nguyên thì: n-2 thuộc Ư(5)={1;-1;5;-5}

=>n=3;1;7;-3

Với n=3 => n+3/n-2 nguyên dương

       n=1 => n+3/n-2 nguyên âm

       n=7 =>n+3/n-2 nguyên dương

       n=-3 =>n+3/n-2 nguyên âm

Vậy n=3;7

25 tháng 4 2017

sao trả lời ít vậy ?uccheuccheucche

25 tháng 2 2016

Ta có :

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.3^2-2^n.2^2+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=3^n.10-2^n.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\) chia hết cho 10

25 tháng 2 2016

Bạn nhấn tổ hợp phím Ctrl + - để thu nhỏ màn hình mới xem được đầy đủ lời giải nhá !

10 tháng 4 2016

vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM 

n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)

nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3

nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ

10 tháng 4 2016

câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)

Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z

nên ta chỉ cần tìm giá trị của n để A chia hết cho5

để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5

                                   nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)

mà 1<n<10 nên n=5(n là số nguyên dương)

vậy giá trị của n thỏa mãn đề bài là 5

 

19 tháng 3 2016

\(_{\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow p^2=\left(m-1\right)\times\left(m+n\right)\Rightarrow p^2=m^2+m\times n-m-n\Rightarrow p^2=m^2+m\times n-m-2\times n}\)

Vậy A\(=p^2-n=m^2+m\times n-m-2\times n\)

8 tháng 9 2017

n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.

19 tháng 3 2016

Ta có: Vế phải bằng: \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\)\(\frac{1}{n}\) - \(\frac{1}{n+1}\) =>đpcm.

31 tháng 3 2016

C. n=-2

31 tháng 3 2016

Để A không là phân số thì n + 2 = 0

n = 0 - 2

n = -2

28 tháng 3 2016

1+2+3+...+n=aaa

\(=>\frac{n\left(n+1\right)}{2}=aaa\)

=>n(n+1)=aaa.2=a.111.2=a.3.37.2=6a.37

Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên 6a.37 cũng là tích 2 số tự nhiên liên tiếp

+)6a=36=>a=6 (TM)

+)6a=38=>a=19/3 (không TM)

do đó a=6 thỏa mãn

Khi đó n(n+1)=1332=36.37=36.(36+1)

=>n=36

Vậy n=36;a=6