K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

\(_{\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow p^2=\left(m-1\right)\times\left(m+n\right)\Rightarrow p^2=m^2+m\times n-m-n\Rightarrow p^2=m^2+m\times n-m-2\times n}\)

Vậy A\(=p^2-n=m^2+m\times n-m-2\times n\)

22 tháng 3 2016

Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Tài Nguyễn Tuấn - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

25 tháng 1 2017

\(m;n\in N\Rightarrow m;n\ge0\)

\(p\) là số nguyên tố

Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)

Do \(\left(m-1\right)\)\(\left(m+n\right)\) là các ước nguyên dương của \(p^2\)

Lưu ý: \(m-1< m+n\left(1\right)\)

\(p\) là số nguyên tố nên \(p^2\)chỉ có các ước nguyên dương là \(1,p\)\(p^2(2)\)

Từ \((1)\)\(\left(2\right)\) ta có \(m-1=1\)\(m+n=p^2\)

\(\Rightarrow m=2\)\(2+n=p^2\)

Vậy\(A=p^2-n=2\)

22 tháng 2 2016

\(\frac{n+3}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)

Để n+3/n-2 là số nguyên thì: n-2 thuộc Ư(5)={1;-1;5;-5}

=>n=3;1;7;-3

Với n=3 => n+3/n-2 nguyên dương

       n=1 => n+3/n-2 nguyên âm

       n=7 =>n+3/n-2 nguyên dương

       n=-3 =>n+3/n-2 nguyên âm

Vậy n=3;7

25 tháng 4 2017

sao trả lời ít vậy ?uccheuccheucche

21 tháng 3 2016

\(\frac{m}{n}\) = (1+\(\frac{1}{1998}\)) + (\(\frac{1}{2}\)\(\frac{1}{1997}\))+...+ (\(\frac{1}{999}\)+\(\frac{1}{1000}\))  ( có 999 cặp)

\(\frac{m}{n}\)\(\frac{1999}{1.1998}\)\(\frac{1999}{2.1997}\) +...+ \(\frac{1999}{999.1000}\)

Gọi mẫu số chung của 999 phân số trên là K 

=> \(\frac{m}{n}\)\(\frac{1999.999}{K}\)  Mà 1999 là số nguyên tố nên khi rút gọn thì ở tử số vẫn còn 1999.

Vậy m=1999n. => m chia hết cho 1999.

2 tháng 5 2017

Bài 3:

\(\left(\dfrac{1}{32}\right)^7=\dfrac{1^7}{32^7}=\dfrac{1}{32^7}=\dfrac{1}{\left(2^5\right)^7}=\dfrac{1}{2^{35}}\\ \left(\dfrac{1}{16}\right)^9=\dfrac{1^9}{16^9}=\dfrac{1}{16^9}=\dfrac{1}{\left(2^4\right)^9}=\dfrac{1}{2^{36}}\)

\(2^{35}< 2^{36}\) nên \(\dfrac{1}{2^{35}}>\dfrac{1}{2^{36}}\) hay \(\left(\dfrac{1}{32}\right)^7>\left(\dfrac{1}{16}\right)^9\)

9 tháng 6 2016

Đặt ưcln(n+3,n+4)=d(d€N*)

=>{n+3,n+4 chia hếtcho d

=>{4n+12,3n+12 chia hết cho d

=>4n+12-(3n+12)chia hết cho d

=>4n+12-3n-12 chia hết cho d

=>1chia hết cho d

=>d€ Ư(1)={ +-1}

Vậy n+3,n+4 nguyên tố cùng nhau

b) Gọi d là ƯC ( 2n + 3 ; 6n + 8 )

=> ( 2n + 3 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d

=> 3 ( 2n + 9 ) \(⋮\)d và ( 6n +8 ) \(⋮\)d

=> [ ( 6n + 9 ) - ( 6n + 8 ) ] \(⋮\)d

=> 1 \(⋮\)  d ; d \(\in\) N* 

=> d = 1

 Vậy ƯCLN ( 2n + 3 ; 6 n+ 8 ) = 1 => \(\frac{2n+3}{6n+8}\) là phân số tối giản.