\(\frac{a+n}{b+n}\)và \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2016

Ghi bị lộn khocroi

15 tháng 4 2016

bạn có thể vào Chưa phân loạiđể hỏi nhé !

Chúc bạn học tốt ! banh

15 tháng 4 2016

A> \(\frac{10^n-2-2}{10^n-1-2}=\frac{10^n-4}{10^n-3}=B\)

=> A>B

29 tháng 3 2016

B=\(\frac{2011^{10}-1}{2011^{10}-3}\) <1 => \(\frac{2011^{10}-1}{2011^{10}-3}\) < \(\frac{2011^{10}-1+2}{2011^{10}-3+2}\) = \(\frac{2011^{10}+1}{2011^{10}-1}\) = A

=> B<A

29 tháng 3 2016

Cảm ơn bạn nhiều nha giải ra lại thấy dễ ak

21 tháng 3 2016

\(A=\frac{10^8+2}{10^8-1}=\frac{\left(10^8-1\right)+3}{10^8-1}=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{\left(10^8-3\right)+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)

Vì \(1+\frac{3}{10^8-1}<1+\frac{3}{10^8-3}\) nên A < B

21 tháng 3 2016

Ta có : 

 A = 108 + 2 / 10 8 - 1 = 1 + 3 / 10 8 - 1

B = 108 / 10 8 - 3 =  1 + 3 / 108 - 3

Vì 3/ 108 - 1 < 3 / 10- 3=> A < B

24 tháng 4 2016

Chào bạn, bạn hãy theo dõi câu trả lời của mình nhé! 

a) Ta có : 

\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{151}=3^{150}\cdot3=\left(3^2\right)^{75}\cdot3=9^{75}\cdot3\)

Mà \(9^{75}>8^{75}=>9^{75}\cdot3>8^{75}=>3^{151}>2^{225}\)

24 tháng 4 2016

b) Nhân cả vế A lẫn vế B với 102005, ta có : 

\(10^{2005}A=-7+\frac{-15}{10}=\frac{-70}{10}+\frac{-15}{10}=\frac{-85}{10}\)

\(10^{2005}B=-15+\frac{-7}{10}=\frac{-150}{10}+\frac{-7}{10}=\frac{-157}{10}\)

Mà \(\frac{-85}{10}>\frac{-157}{10}=>10^{2005}A>10^{2005}B\)

\(=>A>B\)

Chúc bạn học tốt!

 

13 tháng 4 2016

ta có 

A/B=3^10+1/3^9+1 : 3^9+1/3^8+1

A/B=3^10+1/3^9+1 . 3^8+1/+3^9+1

A/B=(3^10+1).(3^8+1)/(3^9+1).(3^9+1)

A/B=3^18+3^10+3^8+1/3^18+3^9+3^9+1

Ta so sánh    3^10+3^8   và   3^9+3^9

                 3^8.(3^2+1)    và   3^8.(3+3)

                3^8.10             và    3^8.6

            vì   3^8.10  > 3^8.6

            nên  A>B

16 tháng 4 2016

A=\(\frac{2014}{2014^a}+\frac{2014}{2014^b}\)=B=\(\frac{2013}{2015^a}\)+\(\frac{2015}{2013^b}\)

17 tháng 4 2016

Ta có: 2014/\(2014^a\)+2014/2014^b= 2013/2014^a + 1/2014^a +2015/2014^a - 1/2014^a

                                                        =(2013/2014^a + 2015/2014^b) + ( 1/2014^a + 1/2014^b)

                                                       =                   B                                 + (1/2014^a + 1/2014^b)

   *Nếu a=b thì A=B

   *Nếu a>b thì (1/2014^a + 1/2014^b) >0

                      \(\Rightarrow\) A< B

   *Nếu a<b thì (1/2014^a + 1/2014^b)>0

                     \(\Rightarrow\) A>B

24 tháng 3 2016

Ta có:

\(10A=10.\left(\frac{10^{234}+1}{10^{235}+1}\right)=\frac{10^{235}+10}{10^{235}+1}=\frac{10^{235}+1}{10^{235}+1}+\frac{9}{10^{235}+1}=1+\frac{9}{10^{235}+1}\)

\(10B=10.\left(\frac{10^{235}+1}{10^{236}+1}\right)=\frac{10^{236}+10}{10^{236}+1}=\frac{10^{236}+1}{10^{236}+1}+\frac{9}{10^{236}+1}=1+\frac{9}{10^{236}+1}\)

\(10^{235}+1<10^{236}+1\Rightarrow\frac{9}{10^{235}+1}\)\(>\)\(\frac{9}{10^{236}+1}\)

\(\Rightarrow1+\frac{9}{10^{235}+1}\)\(>\)\(1+\frac{9}{10^{236}+1}\)

\(\Rightarrow10A>10B\)

\(\Rightarrow A>B\)

Vậy \(A>B\)

22 tháng 2 2016

lồnucche

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(=\frac{1}{4}+\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Đặt \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(B=\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}\right)+\left(\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Giả sử tất cả các số hạng của B đều bằng \(\frac{1}{6^2}\)

\(\Rightarrow B=6.\frac{1}{6^2}=\frac{6}{36}=\frac{1}{6}<\frac{1}{4}\)

Do đó \(B<\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{4}+B<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

Vậy \(A<\frac{1}{2}\)