Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E K M I H F
a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\)
Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.
Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.
b) Xét tam giác BEC và tam giác BHM có :
\(\widehat{BEC}=\widehat{BHM}=90^o\)
Góc B chung
\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)
Ta có \(BK^2=BD^2=BH.BC=BE.EM\) mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)
Vậy MK là tiếp tuyến của đường tròn tâm B.
c)
Gọi F là giao điểm của CE với đường tròn tâm B.
Do \(BE\perp KF\)nên MB là trung trực của FK.
\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.
\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)
Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)
Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.
Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)
Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.
\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)
Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)
\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)
\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)
Câu c) Điều cần CM tương đương \(\frac{MC}{MA}=\frac{MA}{MD}\)
Tức là cần CM \(MC.MD=MA^2\)
Ta đã có \(MC.MD=MO^2\) và \(MO=MA\) do tam giác \(AMO\)cân (bạn thử chứng minh 2 góc đáy bằng nhau ấy)
A C B E D N M Xét M thuộc đường tròn đường kính AC
\(\Rightarrow\) \(\widehat{AMC}=90^0\) .
* Xét \(\Delta AMC\) vuông tại M có đường cao MD \(\Rightarrow\) \(AM^2=AD.AC\) (1)
* Tương tự ta cm được \(AN^2=AE.AB\) (2)
* Xét tam giác AEC và ADB có \(\left\{{}\begin{matrix}chung\widehat{BAC}\\\widehat{AEC}=\widehat{ADB}=\left(90^0\right)\end{matrix}\right.\)
\(\Rightarrow\) Tam giác AEC đồng dạng với tam giác ADB ( g . g)
\(\Rightarrow AE.AB=AC.AD\left(3\right)\)
* Từ 1,2,3 => \(AM^2=AN^2\Rightarrow AM=AN-ĐPCM\)