K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019
https://i.imgur.com/BzNqi00.jpg
26 tháng 12 2019
https://i.imgur.com/PHFvoJD.jpg
23 tháng 12 2016

ta có U6+U8=2U1+12d=-18

\(U^2_3+U^2_5=2U^2_1+12Ud+12d^2=-26\)

từ đó bằng phương pháp giải hệ 2 pt trên là ra

23 tháng 12 2016

Đoạn \(2u_1^2+2ud+12d^2\) em ko hiểu lắm chị ơi :o Em đã giải bài toán này theo cách bên dưới nhưng ra nghiệm rất xấu (ko biết có đúng không?). Em ko hiểu mình đã gặp vấn đề chỗ nào? Mong được kiểm tra giúp ạ? thanks

Cấp số cộng

20 tháng 12 2019
https://i.imgur.com/WVXFRAn.jpg
9 tháng 4 2017
a) Dãy số bị chặn dưới vì un = 2n2 -1 ≥ 1 với mọi n ε N* và không bị chặn trên vì với số M dương lớn bất kì, ta có 2n2 -1 > M <=> n > .
tức là luôn tồn tại n ≥ + 1 để 2 - 1 > M.
b) Dễ thấy un > 0 với mọi n ε N*
Mặt khác, vì n ≥ 1 nên n2 ≥ 1 và 2n ≥ 2.
Do đó n(n + 2) = n2 + 2n ≥ 3, suy ra .
Vậy dãy số bị chặn 0 < un với mọi n ε N*
c) Vì n ≥ 1 nên 2n2 - 1 > 0, suy ra > 0
Mặt khác n2 ≥ 1 nên 2n2 ≥ 2 hay 2n2 - 1≥ 1, suy ra ≤ 1.
Vậy 0 < un ≤ 1, với mọi n ε N* , tức dãy số bị chặn.
d) Ta có: sinn + cosn = √2sin(n + ), với mọi n. Do đó:
-√2 ≤ sinn + cosn ≤ √2 với mọi n ε N*
Vậy -√2 < un < √2, với mọi n ε N* .


9 tháng 4 2017

a) Ta có:

{5u1+10u=0S4=14{5u1+10u=0S4=14

⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3

Vậy số hạng đầu u1 = 8, công sai d = -3

b) Ta có:

{u7+u15=60u24+u212=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2){u7+u15=60u42+u122=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2)

(1) ⇔ 2u1 + 20d = 60 ⇔ u1 = 30 – 10d thế vào (2)

(2) ⇔[(30 – 10D) + 3d]2 + [(30 – 10d) + 11d]2 = 1170

⇔ (30 – 7d)2 + (30 + d)2 = 1170

⇔900 – 420d + 49d2 + 900 + 60d + d2 = 1170

⇔ 50d2 – 360d + 630 = 0

⇔[d=3⇒u1=0d=215⇒u1=−12⇔[d=3⇒u1=0d=215⇒u1=−12

Vậy

{u1=0d=3{u1=0d=3

hay

{u1=−12d=215



22 tháng 8 2023

S= u1.u+ u2.u2+...+un.u

S = u1.(u- d) + u2.(u3 - d)+...+un(un+1 - d)

S = u1.u2 + u2.u+...+un.un+1-d(u1+u2+...+un)

Đặt A = u2.u3 + u3.u4+...+un.un+1

3d.A = u2.u3.(u4-u1) + u3.u4.(u5-u2)+...+un.un+1.(un+2-un-1

3d.A = u2.u3.u4 - u1.u2.u3 + u3.u4.u- u2.u3.u4+...+un.un+1.un+2 - un-1.un.un+1

3d.A = un.un+1.un+2 - u1.u2.u3

3d.A = (u1 + d.n - d)(u1 + d.n)(u+ d.n + d) - u1.(u1+d).(u1+2.d) 

A = [(u1 + d.n - d)(u1 + d.n)(u+ d.n + d) - u1.(u1+d).(u1+2.d)]/(3.d) 

S = A + u1.(u1 + d) + d[2.u1+(n-1).d].n/2 

 

     
20 tháng 12 2019

B

NV
5 tháng 3 2020

\(\lim\limits_{x\rightarrow1}\frac{x^{2016}+x-2}{\sqrt{2018x+1}-\sqrt{x+2018}}=\lim\limits_{x\rightarrow1}\frac{2016x^{2015}+1}{\frac{1009}{\sqrt{2018x+1}}-\frac{1}{2\sqrt{x+2018}}}=\frac{2017}{\frac{1009}{\sqrt{2019}}-\frac{1}{2\sqrt{2019}}}=2\sqrt{2019}\)

Để hàm liên tục tại \(x=1\)

\(\Rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\Rightarrow k=2\sqrt{2019}\)

2.

\(\lim\limits_{x\rightarrow1}\frac{x^2+ax+b}{x^2-1}=\frac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}a+b+1=0\\\lim\limits_{x\rightarrow1}\frac{2x+a}{2x}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-1\\\frac{a+2}{2}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\) \(\Rightarrow S=1\)

3.

\(\lim\limits_{x\rightarrow1}\frac{\sqrt{x^2+x+2}-2+2-\sqrt[3]{7x+1}}{\sqrt{2}\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{\frac{\left(x-1\right)\left(x+2\right)}{\sqrt{x^2+x+2}+2}-\frac{7\left(x-1\right)}{\sqrt[3]{\left(7x+1\right)^2}+2\sqrt[3]{7x+1}+4}}{\sqrt{2}\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{2}}\left(\frac{x+2}{\sqrt{x^2+x+2}+2}-\frac{7}{\sqrt[3]{\left(7x+1\right)^2}+2\sqrt[3]{7x+1}+4}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\frac{3}{4}-\frac{7}{12}\right)=\frac{\sqrt{2}}{12}\)

\(\Rightarrow a+b+c=1+12+0=13\)