K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

M = P + Q

= (3x2y − 2x + 5xy2 − 7y2) + (3xy2 − 7y2 − 9x2y – x – 5)

= 3x2y − 2x + 5xy2 − 7y2 + 3xy2 − 7y2 − 9x2y – x – 5

= (5xy2 + 3xy2) + (3x2y – 9x2y) – (2x + x) – (7y2 + 7y2) – 5

= 8xy2 − 6x2y − 3x − 14y2 – 5.

P+Q=3x^2y-2x+5xy^2-7y^2+3xy^2-7y^2-9x^2y-x-5

= (3x^2y-9x^2y)+(-2x-x)+(5xy^2+3xy^2)+(-7y^2-7y^2)+-5

=12x^2y+-3x+8xy^2+-14y^2+-5

11 tháng 1 2018

a) M = P + Q

M = (3x2y - 2x + 5xy2 -7y2) + (3xy2 - 7y2 - 9x2y - x - 5)

M = 3x2y - 2x + 5xy2 -7y2 + 3xy2 - 7y2 - 9x2y - x - 5

M = 12x2y + 8xy2 -3x -14y2 -5

2 tháng 4 2019

Ta có: \(M=x^2+y^2-2xy^2-6x^2-3xy^2\)

    \(\Rightarrow M=-5x^2+y^2-5xy^2\)

1 tháng 5 2019

a. P= (-8.x^2.y-2.5+6x^2)-(-7x^2y+2x^2)

b. P= vế phải cộng vế trái là ra

30 tháng 4 2019

a. P=-x^2.y-10+4.x^2

b.P= 7xy+x^2-11y

17 tháng 6 2018

A + B - C = \(x^2-2x\)\(+3xy^2-x^2y+x^2y^2\)\(+\left(-2x^2\right)+3y^2-5x+y+3\)\(-\left(3x^2-2xy+7y^2-3x-5y-6\right)\)

\(x^2-2x+3xy^2-x^2y+x^2y^2-2x^2+3y^2-5x+y+3-3x^2+2xy-7y^2+3x+5y+6\)

=  \(-4x^2+3xy^2-4x-4y^2+6y+2xy+9\)

A-B+C=\(x^2-2x+3xy^2-x^2y+x^2y^2\)\(-\left(-2x^2+3y^2-5x+y+3\right)\)\(+3x^2-2xy+7y^2-3x-5y-6\)

 = \(x^2-2x+3xy^2-x^2y+x^2y^2+2x^2-3y^2+5x-y-3\)\(+3x^2-2xy+7y^2-3x-5y-6\)

\(6x^2+3xy^2+4y^2-2xy-6y-9\)

-A+B+C =\(-\left(x^2-2x+3xy^2-x^2y+x^2y^2\right)\)\(-2x^2+3y^2-5x+y+3+3x^2-2xy+7y^2\)\(-3x-5y-6\)

\(-x^2+2x-3xy^2+x^2y-x^2y^2\)\(-2x^2+3y^2-5x+y+3\)\(+3x^2-2xy+7y^2-3x-5y-6\)

\(-6x+10y^2-3xy^2-4y-2xy-3\)

còn bậc cậu tự tìm nha bậc để mà

29 tháng 3 2017

\(\left\{{}\begin{matrix}f\left(x\right)=3x^4+5yx^2-3yx+y^4+z^2\\M\left(x\right)=ax^4+bx^2+cx+D\end{matrix}\right.\)

\(f\left(x\right)+M\left(x\right)=\left(3+a\right)x^4+\left(5y+a\right)x^2+\left(-3y+c\right)x+y^4+z^2+D\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-5y\\c=3y\end{matrix}\right.\)\(\Rightarrow M\left(x\right)=-3x^4-5yx^2+3yx+y^4+z^2+D\) với D tùy ý không chứa x

30 tháng 3 2017

\(\int f\left(x\right)dx=x^3+C\)

\(\sum a\left(b^2-1\right)\left(c^2-1\right)\)

\(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(b^2-1\right)\left(a^2-1\right)\)

\(\begin{matrix}\sum a\left(b^2-1\right)\left(c^2-1\right)=\sum\left(ab^2-a\right)\left(c^2-1\right)=\sum\left(ab^2c^2-ab^2-ac^2+a\right)\\\left(ab^2c^2-ab^2-ac^2+a\right)+\\\left(a^2bc^2-ba^2-bc^2+b\right)+\\\left(a^2b^2c-b^2c-a^2c+c\right)\end{matrix}\)

\(a+b+c\Rightarrow a+b=abc-c\) \(\Rightarrow\sum ab\left(a+b\right)=\sum ab\left(abc-c\right)=\sum a^2b^2c-abc\)

\(\left[abc\left(bc+ac+ab\right)\right]-\left[ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\right]+\left[\left(a+b+c\right)\right]\)

\(\sum a^2b^2c-abc=\left(-abc+a^2b^2c\right)+\left(-abc+a^2bc^2\right)+\left(-abc+ab^2c^2\right)=-3abc+abc\left(ab+bc+ac\right)\)

\(\left[abc\left(bc+ac+ab\right)\right]+3abc-abc\left(ab+bc+ac\right)+\left(a+b+c\right)=3abc+abc=4abc=VP\)

5 tháng 6 2018

A + B - C

\(=\left(x^2-2x+3xy^2-x^2y^2\right)+\left(-2x^2+3y^2+5x+y+3\right)-\left(3x^2-2xy+7y^2-3x+1\right)\)

\(=x^2-2x+3xy^2-x^2y^2-2x^2+3y^2+5x+y+3-3x^2+2xy-7y^2+3x-1\)

\(=\left(x^2-2x^2-3x^2\right)+\left(-2x-5x+3x\right)++3xy^2-x^2y+x^2y^2+\left(3y^2-7y^2\right)+y+\left(3-1\right)\)

\(=-4x^2-4x+3xy^2-x^2y+x^2y^2-4y^2+y+2\)

Bậc của đa thức là 4

31 tháng 5 2018

@Lê Thị Điệu Đàn nè

20 tháng 4 2017

Có vô số đa thức thỏa mãn, tớ lấy 1 đa thức thôi

M=-x2-3xy-2xy

Ngoài ra còn vô số đa thức, bạn có thể lấy 1 đa thức khác nếu muốn

20 tháng 4 2017

M = -x2 - 3xy - 1,5y2 - 2xy + 3z2