K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

+ Ta có hàm số g(x) = x 3   - 3 x 2   + 2   =   m  là hàm số chẵn nên đồ thị nhận trục Oy làm trục đối xứng.

 

+ Khi x≥ 0 ; g(x) = x3- 3x2+ 2

Do đó; đồ thị hàm số g(x) = x 3   -   3 x 2   +   2  có dạng như hình vẽ.

+ Dựa vào đồ thị suy ra phương trình x 3   -   3 x 2   + 2   =   m  có nhiều nghiệm thực nhất khi và chỉ khi -2< m<  2.

Chọn C.

NV
28 tháng 8 2021

Đặt \(\sqrt{-x^2+2x+15}=t\Rightarrow0\le t\le4\)

BPT trở thành:

\(-4t\ge-t^2+2+m\)

\(\Leftrightarrow t^2-4t-2\ge m\)

\(\Rightarrow m\le\min\limits_{\left[0;4\right]}\left(t^2-4t-2\right)\)

Xét \(f\left(t\right)=t^2-4t-2\) trên \(\left[0;4\right]\)

\(-\dfrac{b}{2a}=2\in\left[0;4\right]\)

\(f\left(0\right)=f\left(4\right)=-2\) ; \(f\left(2\right)=-6\)

\(\Rightarrow f\left(t\right)_{min}=-6\Rightarrow m\le-6\)

14 tháng 11 2019

+ Xét hàm số f( x) = x3- x2+ ( m2+ 1) x- 4m- 7  trên đoạn [ 0; 2]

Ta có f’ (x) = 3x2- 2x+ m2+ 1= 3( x-1/3) 2+ m2+ 2/3> 0 .

+ Suy ra hàm số f(x)  đồng biến trên

  0 ; 2 ⇒ m i n [ 0 ; 2 ]   f ( x ) = f ( 0 ) = - 4 m - 7 m a x [ 0 ; 2 ]   f ( x ) = f ( 2 ) = 2 m 2 - 4 m - 1

+ Khi đó

m a x [ 0 ; 2 ]   y = m a x [ 0 ; 2 ]   f ( x ) = m a x - 4 m - 7 ; 2 m 2 - 4 m - 1 ≤ 15 ⇔ - 4 m - 7 ≤ 15 2 m 2 - 4 m - 1 ≤ 15 ⇔ - 11 2 ≤ m ≤ 2 2 m 2 - 4 m - 16 ≤ 0 ⇔ - 11 2 ≤ m ≤ 2 - 2 ≤ m ≤ 4 ⇔ - 2 ≤ m ≤ 2 → m ∈ ℤ m ∈ ± 2 ; ± 1 ; 0

Vậy có 5 giá trị thoả mãn.

Chọn C.

9 tháng 11 2017

Chọn C

20 tháng 3 2017

30 tháng 12 2019

Chọn B

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12