Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Giải: Biết chữ số hàng trăm, hàng chục, hàng đơn vị là 3 số tự nhiên liên tiếp tăng dần nên các số đó là: 123, 234,345,456,567,789. Và khi viết theo thứ tự ngược lại thì các số đó là: 321,432,543,654,765,987.
Số đó sẽ tăng lên là: 321 - 123 = 198
432 - 234 = 198
Tương tự như thế
.......................
Đáp số: 198
gọi 4 số cần tìm lần lượt là a,b,c,d
theo đề ta có;
\(\frac{\left(a+b+c+d\right)}{4}=45\) (1)
a-2=b:2=c+2=2d
ta đặt: a-2=b:2=c+2=2d=k
suy ra a=k+2;b=2k;c=k-2;d=k:2 (2)
thay (2) vào (1), ta được:
\(\frac{\left(a+b+c+d\right)}{4}=45\)
\(\frac{\left(k+2+2k+k-2+\frac{k}{2}\right)}{4}=45\)
\(\frac{9}{2}k=180\)
\(k=40\)
\(\Rightarrow a=k+2=40+2=42\)
\(\Rightarrow b=2k=2.40=80\)
\(\Rightarrow c=k-2=40-2=38\)
\(\Rightarrow d=\frac{k}{2}=\frac{40}{2}=20\)
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
Đáp án là D