Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)
\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)
Tương tự cho các số còn lại rồi cộng vào sẽ được
\(S\le\dfrac{3}{2}\)
Dấu "=" khi a=b=c=1
Vậy
\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)
\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)
Cmtt rồi cộng vào ta đc đpcm
Dấu "=" khi x = y = z = 1/3
14.
\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)
15.
\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)
\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)
\(\Leftrightarrow log_a^2b-2log_ab+1=0\)
\(\Leftrightarrow\left(log_ab-1\right)^2=0\)
\(\Rightarrow log_ab=1\Rightarrow a=b\)
16.
\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)
\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)
11.
\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)
\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)
\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)
\(\Rightarrow\) có \(-2+2020+1=2019\) nghiệm
12.
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)
\(\Rightarrow3< x< 5\Rightarrow b-a=2\)
13.
\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)
\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)
Ta có :
\(\log_ab\ge\log_{a+c}\left(b+c\right)\Leftrightarrow\log_ab-1\ge\log_{a+c}\left(b+c\right)-1\)
\(\Leftrightarrow\log_a\frac{b}{a}\ge\log_{a+c}\frac{b+c}{a+c}\)
Với \(1< a\le b\) và \(c\ge0\Rightarrow\frac{b}{a}\ge\frac{b+c}{a+c}\ge1\) nên \(\log_a\frac{b}{a}\ge\log_a\frac{b+c}{a+c}\) (*)
Mặt khác, ta được : \(\log_a\frac{b+c}{a+c}\ge\log_{a+c}\frac{b+c}{a+c}\) (**)
Từ (*) và (**) \(\Rightarrow\log_ab\ge\log_{a+c}\left(b+c\right)\)
Dấu "=" xảy ra khi c = 0 hoặc a = b
Vì \(a,b>1\) và \(c\ge0\Rightarrow0< \log_ba\le\log_b\left(a+c\right)\)
\(\Rightarrow\frac{1}{\log_ba}\ge\frac{1}{\log_b\left(a+c\right)}\Leftrightarrow\log_ab\ge\log_{a+c}b\)
\(\Rightarrow\) điều phải chứng minh
\(a^2+4b^2=23ab\Rightarrow a^2+4ab+4b^2=27ab\Rightarrow\left(a+2b\right)^2=27ab\)
\(\Rightarrow\dfrac{\left(a+2b\right)^2}{9}=3ab\)\(\Rightarrow\left(\dfrac{a+2b}{3}\right)^2=3ab\)
Lấy logarit cơ số c hai vế:
\(log_c\left(\dfrac{a+2b}{3}\right)^2=log_c\left(3ab\right)\)
\(\Rightarrow2log_c\dfrac{a+2b}{3}=log_c3+log_ca+log_cb\)
\(\Rightarrow log_c\dfrac{a+2b}{3}=\dfrac{1}{2}\left(log_ca+log_cb+log_c3\right)\)