Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bấm máy đi bạn, toán tổ hợp ấy mà (nằm trong chương trình nâng cao lớp 8 và lớp 11 cơ bản)
3.
\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)
\(\Leftrightarrow-3< x< 7\)
\(\Rightarrow C=\left(-3;7\right)\)
\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)
\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)
\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)
4.
Hình như cái đề chẳng liên quan gì đến đáp án hết :)
1.
\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)
2.
\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)
Rất tiếc tập này không thể liệt kê được (có vô số phần tử)
1. a) Tập hợp con của A: {a} và \(\varnothing\)
b) Tập hợp con của B: {a}; {b}; {a;b} và \(\varnothing\)
c) Tập hợp con: \(\varnothing\)
2. a) A có 1 phần tử thì A sẽ có: 21=2 (tập hợp con)
b) A có 2 phần tử thì A sẽ có: 22=4 (tập hợp con)
c) A có 3 phần tử thì A sẽ có: 23=8 (tập hợp con)
*Cách tính số tập hợp con: Nếu tập hợp A có n phần tử thì A sẽ có 2n tập hợp con.
Tập C có 7 phần tử nên có \(C_7^3=35\) tập con có 3 phần tử
Bạn cho mk xin công thức tổng quát tính tập con hay phần tử của tập hợp ko
A={1,2,3,4,6,9,12,18.36}
B={3,6,9}
quan hệ: B là tập hợp con của A
E={1,2,4,12,18,36}
hai phần tử thuộc B: {3,6}; {6,9};{3,9}
Đáp án: B
Số tập hợp con có 3 phần tử của A là {a;b;c}, {a;b;d}, {a;b;e}, {a;c;d}, {a;c;e}, {a;d;e}, {b;c;d}, {b;c;e}, {b;d;e}, {c;d;e}
=> có 10 tập con