K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

1. \(a< b\Leftrightarrow2a< 2b\Leftrightarrow2a+1< 2b+1\)

\(a< b\Leftrightarrow-3a>-3b\Leftrightarrow-3a>-3b-1\)

2.\(a>b>0\Leftrightarrow a.\frac{1}{ab}>b.\frac{1}{ab}\Leftrightarrow\frac{1}{b}>\frac{1}{a}\Leftrightarrow\frac{1}{a}< \frac{1}{b}\)

10 tháng 8 2017

Do phần B đc tính theo lũy thừa nên

\(A< B\)

Vậy....

25 tháng 3 2019

sai đề rồi bạn.\(\frac{a}{b}>\frac{a+c}{b+c}\) với \(a>b\) mới đúng nha.

Ta có:\(A=\frac{10^{17}+1}{10^{16}+1}>\frac{10^{17}+1+9}{10^{16}+1+9}=\frac{10^{17}+10}{10^{16}+10}=\frac{10\left(10^{16}+1\right)}{10\left(10^{15}+1\right)}=\frac{10^{16}+1}{10^{15}+1}\)

\(\Rightarrow A>B\)

25 tháng 3 2019

:DDDDDD

5 tháng 5 2017

a. Do \(a>0,\) \(b>0\) \(\Rightarrow a,b\) là số dương

Ta có:

* \(a< b\Leftrightarrow a^2< ab\) (nhân cả hai vế với a)

* \(a< b\Leftrightarrow ab< b^2\) (nhân cả hai vế với b)

b. Từ câu a theo tính chất bắc cầu suy ra:\(a^2< b^2\)

Ta có: \(a^2< b^2\Leftrightarrow a^3< ab^2\) (nhân cả hai vế với a)

ab2<b3 (a<b)

\(\Rightarrow a^3< b^3\)

23 tháng 7 2016

a) \(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=.............................................................\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=B-1\)

Suy ra A < B

b) \(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1=B-1\)

Suy ra A < B

23 tháng 7 2016

Phần a bạn nhân thêm ở A là (2-1) là ra hằng đẳng thức, cứ thế mà triển. (Kết quả: A<B)

Phần b: phân tích A, ta có:

2015.2017= (2016-1).(2016+1)= 2016^2 -1 <2016^2

Suy ra: A<B

22 tháng 4 2017

Ta có:

a < b và 2 > 0 => 2a < 2b

a < b cộng hai vế với a

=> a + a < a + b => 2a < a + b

a < b và -1 < 0 => -a > -b

15 tháng 4 2018
https://i.imgur.com/j3XSqUo.jpg
10 tháng 7 2018

Vì \(\sqrt{x}\ge0\Rightarrow0\le\sqrt{x}< 3\)

\(\Rightarrow0\le x< 9\Rightarrow x\in\left\{0;1;2;...;8\right\}\)

\(b,x^2=5\)

\(\Rightarrow\sqrt{x^2}=\pm\sqrt{5}\)

\(\Rightarrow x=\pm\sqrt{5}\)

c, Ta có:\(x\ne0\left(\sqrt{x}\ge0\forall x\right)\)

\(\Rightarrow\sqrt{0}\le\sqrt{x}< \sqrt{2}\)

\(\Rightarrow0\le x< 4\)

\(\Rightarrow x\in\left\{0;1;2;3\right\}\)

23 tháng 7 2016

ai giúp tôi vs