K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

Đáp án B

Ta có: u.v =11 nên u.(-v) = -11 (1)

Từ u – v = 10 nên u + (- v) = 10 (2)

Khi đó; u và (-v) là nghiệm phương trình:

x 2 - 10 x - 11 = 0 (*)

Do a - b + c = 1 -(-10 ) + (-11) = 0 nên phương trình (*) có 2 nghiệm là:

x 1  = -1 và x 2  = 11

* Trường hợp 1: Nếu u = -1 và –v = 11

=> v = -11 nên u + v = -12

* Trường hợp 2: nếu u = 11 và –v = -1 thì v = 1

Suy ra: u + v = 12

Trong cả 2 trường hợp ta có: |u + v| = 12

30 tháng 4 2020

a) u, v là nghiệm phương trình: 

X^2 - 15 X + 36 = 0 

\(\Delta=15^2-4.36=81\)

=> \(\orbr{\begin{cases}X=\frac{-\left(-15\right)+\sqrt{81}}{2}=12\\X=\frac{-\left(-15\right)-\sqrt{81}}{2}=3\end{cases}}\)

Vậy (u; v) = ( 12; 3 ) hoặc (u; v ) = (3; 12) 

b) và c ) tương tự 

d) \(u^2+v^2=\left(u+v\right)^2-2uv=13\)

=> \(\left(u+v\right)^2=25\)

=> u + v = 5 hoặc u + v = - 25 

Có 2 TH: 

TH1: u + v = 5 và uv= 6 

TH2: u + v = -5 và uv = 6 

Làm tương tự như câu a.

15 tháng 7 2018

a,    ta có  

        \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}< 3+4< 7\)             (1)

lại có         \(\sqrt{65}-1>\sqrt{64}-1>8-1>7\)                 (2)

từ (1) và(2) =>\(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

bài 2 

\(M=\sqrt{\frac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}=\sqrt{\frac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}=\sqrt{\frac{2^{20}}{2^{12}}}=\sqrt{2^8}=2^4\)

12 tháng 5 2019

Câu a em nghĩ có thể làm như vầy ạ,câu b để sau (em mới lớp 7,cần suy ra nghĩ thêm)

a)ĐKXĐ: x > 4; \(y\ne2\) 

Đặt \(\frac{1}{\sqrt{x-4}}=a;\frac{1}{y+2}=b\)

Hệ phương trình trở thành: \(\hept{\begin{cases}3a+4b=7\\5a-b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}3a+4b=7\\20a-4b=16\end{cases}}\)

Cộng theo vế với vế của hai phương trình trong hệ,ta được: \(23a=7+16=23\Rightarrow a=1\Rightarrow b=1\)

Đến đây dễ rồi ạ.

12 tháng 5 2019

b) 

\(u^2+v^2+2uv=65-56=9=\left(u+v\right)^2=9\Rightarrow\orbr{\begin{cases}u+v=3\\u+v=-3\end{cases}}\)

\(u^2+v^2-2uv=65+56=121=\left(u-v\right)^2=121\Rightarrow\orbr{\begin{cases}u-v=11\\u-v=-11\end{cases}}\)

tự làm tiếp