Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn ơi K thuộc SD hả ? ... nếu vậy thì MK sẽ không thể song song với mặt phẳng ( SBC) đâu nhé :)
A B C D M N P Q
a/ Trong mp (BCD) dựng đường thẳng // với CD cắt BD tại P => CD//NP (1)
=> mp (MNP) là mp \(\alpha\)
Trong mp (ACD) từ M dựng đường thẳng //CD cắt AC tại Q => CD//MQ (2)
Từ (1) và (2) => NP//MQ => MPNQ là thiết diện của tứ diện ABCD với mp \(\alpha\)
b/
Xét tg ACD có
MQ//CD và MA=MD => QA=QC (trong tam giác đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại của tam giác => MQ là đường trung bình của tg ACD \(\Rightarrow MQ=\frac{CD}{2}\)
Ta có MQ//NP để MPNQ là hình bình hành thì \(MQ=NP=\frac{CD}{2}\) (tứ giác có 1 cặp cạnh đối // và = nhau thì tứ giác là hbh)
=> NP là đường trung bình của tg BCD => N là trung điểm của BC
a) S là điểm chung thứ nhất của \(\left(SAB\right)\)và\(\left(SCD\right)\)
Trong \(\left(ABCD\right):\)
\(AB\)∩ \(CD=E\)
\(E\)là chung điểm thứ hai của \(\left(SAB\right)\)và \(\left(SCD\right)\)
Vậy \(\left(SBC\right)\text{∩}\left(SAD\right)=SF\)
b) Trong \(\left(ABCD\right):AD\text{∩ }BC=F\)
Vậy \(\left(SBC\right)\text{∩}\left(SAD\right)=SF\)
a) (SAB) giao (SDC)= S
Gọi AB giao CD=O => (SAB) giao ( SCD)= O
Vậy (SAB) giao (SDC)=SO
b) (SAD) giao ( SBC)= S
Gọi AD giao BC= I => (SAD) giao ( SBC)=I
Vậy (SAD) giao (SBC)= SI
Câu 1:
$S=1+\cos ^2x+\cos ^4x+...+\cos ^{2n}x=1+\cos ^2x+(\cos ^2x)^2+...+(\cos ^2x)^n=\frac{(\cos ^2x-1)(1+\cos ^2x+(\cos ^2x)^2+...+(\cos ^2x)^n}{\cos ^2x-1}$
$=\frac{(\cos ^2x)^{n+1}-1}{\cos ^2x-1}=\frac{\cos ^{2n+2}x-1}{\sin ^2x}$